論文の概要: Behavior Trees Enable Structured Programming of Language Model Agents
- arxiv url: http://arxiv.org/abs/2404.07439v1
- Date: Thu, 11 Apr 2024 02:44:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 15:18:26.797727
- Title: Behavior Trees Enable Structured Programming of Language Model Agents
- Title(参考訳): 言語モデルエージェントの構造的プログラミングを可能にする振舞い木
- Authors: Richard Kelley,
- Abstract要約: ビヘイビアツリーは、言語モデルと古典的なAIと伝統的なプログラミングを組み合わせるための統一的なフレームワークを提供する、と我々は主張する。
本稿では,行動木を用いたプログラミング言語モデルエージェントのためのPythonライブラリであるDendronを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models trained on internet-scale data sets have shown an impressive ability to solve problems in Natural Language Processing and Computer Vision. However, experience is showing that these models are frequently brittle in unexpected ways, and require significant scaffolding to ensure that they operate correctly in the larger systems that comprise "language-model agents." In this paper, we argue that behavior trees provide a unifying framework for combining language models with classical AI and traditional programming. We introduce Dendron, a Python library for programming language model agents using behavior trees. We demonstrate the approach embodied by Dendron in three case studies: building a chat agent, a camera-based infrastructure inspection agent for use on a mobile robot or vehicle, and an agent that has been built to satisfy safety constraints that it did not receive through instruction tuning or RLHF.
- Abstract(参考訳): インターネット規模のデータセットでトレーニングされた言語モデルは、自然言語処理とコンピュータビジョンの問題を解決する素晴らしい能力を示している。
しかし、これらのモデルはしばしば予期せぬ方法で不安定であり、「言語モデルエージェント」を構成する大規模システムで正しく動作することを保証するために重要な足場を必要とする。
本稿では,行動木が言語モデルと古典的AIと従来のプログラミングを組み合わせるための統一的なフレームワークを提供する,と論じる。
本稿では,行動木を用いたプログラミング言語モデルエージェントのためのPythonライブラリであるDendronを紹介する。
本稿では,Dendron氏が実施した3つのケーススタディとして,チャットエージェントの構築,移動ロボットや車両で使用するためのカメラベースのインフラストラクチャ検査エージェントの構築,および命令チューニングやRLHFによって受信されない安全制約を満たすために構築されたエージェントについて紹介する。
関連論文リスト
- Symbolic Learning Enables Self-Evolving Agents [55.625275970720374]
エージェントシンボリックラーニング(エージェントシンボリックラーニング)(エージェントシンボリックラーニング)は、言語エージェントが自分自身で最適化できるための体系的なフレームワークである。
エージェント記号学習は、コネクショナリズム学習における2つの基本的なアルゴリズムを模倣することにより、言語エージェント内のシンボルネットワークを最適化するように設計されている。
我々は、標準ベンチマークと複雑な実世界のタスクの両方で概念実証実験を行う。
論文 参考訳(メタデータ) (2024-06-26T17:59:18Z) - Bootstrapping Cognitive Agents with a Large Language Model [0.9971537447334835]
大規模な言語モデルは、世界の騒々しい一般的な知識を含んでいるが、訓練や微調整は困難である。
この研究では、認知モデルと大きな言語モデルで符号化されたノイズの多い知識をブートストラップで組み合わせます。
論文 参考訳(メタデータ) (2024-02-25T01:40:30Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - Agents: An Open-source Framework for Autonomous Language Agents [98.91085725608917]
我々は、言語エージェントを人工知能への有望な方向と見なしている。
Agentsはオープンソースライブラリで、これらの進歩を広く非専門的な聴衆に開放することを目的としています。
論文 参考訳(メタデータ) (2023-09-14T17:18:25Z) - Grounded Decoding: Guiding Text Generation with Grounded Models for
Embodied Agents [111.15288256221764]
グラウンデッドデコーディングプロジェクトは、両方のモデルの知識を活用することで、ロボット環境で複雑な長期タスクを解決することを目的としている。
我々はこれを確率的フィルタリングに類似した問題として、言語モデルの下で高い確率を持つシーケンスをデコードし、基底モデル対象のセットで高い確率を示す。
本研究では,3つのシミュレーション領域と実世界の領域にまたがって,そのような基底モデルがどのように得られるのかを実証し,両モデルの知識を活用して,ロボット環境での複雑な長期的タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-03-01T22:58:50Z) - Language Models are General-Purpose Interfaces [109.45478241369655]
本稿では,様々な基礎モデルに対する汎用インタフェースとして言語モデルを提案する。
事前訓練されたエンコーダのコレクションは、様々なモダリティ(ビジョンや言語など)を知覚する
インタフェースとモジュールエンコーダを協調的に事前学習するための半因果言語モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-06-13T17:34:22Z) - Pre-Trained Language Models for Interactive Decision-Making [72.77825666035203]
目的と観測を埋め込みのシーケンスとして表現する模倣学習の枠組みを述べる。
このフレームワークは様々な環境にまたがって効果的な一般化を可能にすることを実証する。
新たなゴールや新しいシーンを含むテストタスクでは、言語モデルによる初期化ポリシーはタスク完了率を43.6%改善する。
論文 参考訳(メタデータ) (2022-02-03T18:55:52Z) - Language Models are not Models of Language [0.0]
トランスファーラーニングにより、言語モデリングタスクでトレーニングされた大規模なディープラーニングニューラルネットワークにより、パフォーマンスが大幅に向上した。
深層学習モデルは言語の理論的モデルではないので、言語モデルという用語は誤解を招く。
論文 参考訳(メタデータ) (2021-12-13T22:39:46Z) - SCELMo: Source Code Embeddings from Language Models [33.673421734844474]
本稿では,言語モデルに基づくコンピュータ・プログラムにおける文脈表現の深層化について紹介する。
比較的小さなプログラムのコーパスで訓練された低次元埋め込みでさえ、バグ検出のための最先端の機械学習システムを改善することができることを示す。
論文 参考訳(メタデータ) (2020-04-28T00:06:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。