論文の概要: Trashbusters: Deep Learning Approach for Litter Detection and Tracking
- arxiv url: http://arxiv.org/abs/2404.07467v1
- Date: Thu, 11 Apr 2024 04:14:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 15:08:41.544422
- Title: Trashbusters: Deep Learning Approach for Litter Detection and Tracking
- Title(参考訳): Trashbusters: リッター検出と追跡のためのディープラーニングアプローチ
- Authors: Kashish Jain, Manthan Juthani, Jash Jain, Anant V. Nimkar,
- Abstract要約: 本研究は,公共の場でのごみ処理の問題に対処するため,ごみ処理の自動化に重点を置いている。
手動による介入や目撃者の報告に依存する従来のアプローチは、遅延、不正確さ、匿名性の問題に悩まされている。
本稿では、監視カメラと高度なコンピュータビジョンアルゴリズムを利用して、ゴミ検知、物体追跡、顔認識を完全自動化するシステムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The illegal disposal of trash is a major public health and environmental concern. Disposing of trash in unplanned places poses serious health and environmental risks. We should try to restrict public trash cans as much as possible. This research focuses on automating the penalization of litterbugs, addressing the persistent problem of littering in public places. Traditional approaches relying on manual intervention and witness reporting suffer from delays, inaccuracies, and anonymity issues. To overcome these challenges, this paper proposes a fully automated system that utilizes surveillance cameras and advanced computer vision algorithms for litter detection, object tracking, and face recognition. The system accurately identifies and tracks individuals engaged in littering activities, attaches their identities through face recognition, and enables efficient enforcement of anti-littering policies. By reducing reliance on manual intervention, minimizing human error, and providing prompt identification, the proposed system offers significant advantages in addressing littering incidents. The primary contribution of this research lies in the implementation of the proposed system, leveraging advanced technologies to enhance surveillance operations and automate the penalization of litterbugs.
- Abstract(参考訳): ゴミの不法処理は公衆衛生と環境問題である。
計画されていない場所でゴミを処分することは、深刻な健康と環境リスクを引き起こす。
公共のゴミ箱をできるだけ制限すべきだ。
本研究は,公共の場でのごみ処理の問題に対処するため,ごみ処理の自動化に重点を置いている。
手動による介入や目撃者の報告に依存する従来のアプローチは、遅延、不正確さ、匿名性の問題に悩まされている。
これらの課題を克服するために, 監視カメラと高度なコンピュータビジョンアルゴリズムを用いて, ごみ検出, 物体追跡, 顔認識を行う完全自動化システムを提案する。
このシステムは、ごみ処理に携わる個人を正確に識別し、追跡し、顔認証によって身元を同定し、対光対策の効率的な実施を可能にする。
手動による介入への依存を減らし、ヒューマンエラーを最小限に抑え、迅速な識別を提供することにより、提案システムは、ゴミ処理事件に対処する上で大きな利点を提供する。
本研究の主な貢献は,監視活動の強化とごみ処理の自動化に先進的な技術を活用し,提案システムの実装である。
関連論文リスト
- Illegal Waste Detection in Remote Sensing Images: A Case Study [3.597590409773007]
超高分解能リモートセンシング画像の高可用性化とコスト削減により, 現在では不適切な廃棄物管理がより容易になっている。
本稿では, 地域環境機関の専門家と共同で, 不法投棄候補地を検出するパイプラインを提案する。
論文 参考訳(メタデータ) (2025-02-10T16:04:54Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - Solid Waste Detection, Monitoring and Mapping in Remote Sensing Images: A Survey [0.8499685241219366]
不適切に管理された埋立地は、浸透雨水を介して土壌と地下水を汚染し、動物と人間の両方に脅威を与える。
現場検査のような伝統的な埋立地識別アプローチは、時間と費用がかかる。
地球観測衛星(EO)は、センサーと撮像機能を備えた衛星で、数十年にわたって高解像度のデータを提供してきた。
論文 参考訳(メタデータ) (2024-02-14T10:24:04Z) - Floor extraction and door detection for visually impaired guidance [78.94595951597344]
未知の環境で障害物のない経路を見つけることは、視覚障害者や自律ロボットにとって大きなナビゲーション問題である。
コンピュータビジョンシステムに基づく新しいデバイスは、障害のある人が安全な環境で未知の環境でナビゲートすることの難しさを克服するのに役立つ。
本研究では,視覚障害者のためのナビゲーションシステムの構築につながるセンサとアルゴリズムの組み合わせを提案する。
論文 参考訳(メタデータ) (2024-01-30T14:38:43Z) - Deteksi Sampah di Permukaan dan Dalam Perairan pada Objek Video dengan
Metode Robust and Efficient Post-Processing dan Tubelet-Level Bounding Box
Linking [0.0]
本稿では, 自動ゴミ収集ロボットにおいて, 映像オブジェクト検出に応用可能な手法について説明する。
本研究は, YOLOv5モデルとRobust & Efficient Post Processing (REPP)法と, FloWおよびRoboflowデータセット上にリンクするチューブレットレベルのバウンディングボックスを利用する。
その結果, 後処理段階とチューブレットレベルのバウンディングボックスリンクにより検出精度が向上し, YOLOv5単独と比較して約3%高い性能が得られた。
論文 参考訳(メタデータ) (2023-07-14T04:04:15Z) - Unsupervised Adaptation from Repeated Traversals for Autonomous Driving [54.59577283226982]
自動運転車はエンドユーザー環境に一般化し、確実に動作させなければならない。
潜在的な解決策の1つは、エンドユーザの環境から収集されたラベルのないデータを活用することである。
適応過程を監督する信頼性のある信号はターゲット領域に存在しない。
この単純な仮定は、ターゲット領域上の3次元物体検出器の反復的自己学習を可能にする強力な信号を得るのに十分であることを示す。
論文 参考訳(メタデータ) (2023-03-27T15:07:55Z) - Review on Action Recognition for Accident Detection in Smart City
Transportation Systems [0.0]
異なる監視カメラを使用してスマートシティの交通の流れを監視することは、事故を認識し、最初の応答者を警告する上で重要な役割を果たす。
コンピュータビジョンタスクにおける行動認識(AR)の利用は、ビデオ監視、医療画像、デジタル信号処理における高精度な応用に寄与している。
本稿では,自動運転車や公共交通安全システムにおける事故検出システムの開発と統合に向けた研究の方向性について述べる。
論文 参考訳(メタデータ) (2022-08-20T03:21:44Z) - Initiative Defense against Facial Manipulation [82.96864888025797]
本稿では,悪意あるユーザによって制御される顔操作モデルの性能を低下させるための,イニシアティブ・ディフェンスの新しい枠組みを提案する。
まず、サロゲートモデルを用いてターゲット操作モデルを模倣し、次に毒の摂動発生器を考案し、所望の毒を得る。
論文 参考訳(メタデータ) (2021-12-19T09:42:28Z) - ZeroWaste Dataset: Towards Automated Waste Recycling [51.053682077915546]
産業レベルの廃棄物検出・分別データセットZeroWasteについて述べる。
このデータセットには、実際の廃棄物処理工場から収集された1800以上のビデオフレームが含まれている。
最先端のセグメンテーション手法では,対象物を正しく検出・分類することが困難であることを示す。
論文 参考訳(メタデータ) (2021-06-04T22:17:09Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - HazeDose: Design and Analysis of a Personal Air Pollution Inhaled Dose
Estimation System using Wearable Sensors [6.284628903370058]
我々はこのパラダイムを、個人の大気汚染をパーソナライズするHazeDoseシステムに拡張する。
ユーザはモバイルアプリケーションを通じて、パーソナライズされた大気汚染の暴露情報を視覚化できる。
1つのアルゴリズムは、代替ルートシナリオの実行時間と量削減のバランスをとるために導入された。
論文 参考訳(メタデータ) (2020-05-28T02:35:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。