Multi-View Consistent Generative Adversarial Networks for 3D-aware Image
Synthesis
- URL: http://arxiv.org/abs/2204.06307v1
- Date: Wed, 13 Apr 2022 11:23:09 GMT
- Title: Multi-View Consistent Generative Adversarial Networks for 3D-aware Image
Synthesis
- Authors: Xuanmeng Zhang, Zhedong Zheng, Daiheng Gao, Bang Zhang, Pan Pan, Yi
Yang
- Abstract summary: 3D-aware image synthesis aims to generate images of objects from multiple views by learning a 3D representation.
Existing approaches lack geometry constraints, hence usually fail to generate multi-view consistent images.
We propose Multi-View Consistent Generative Adrial Networks (MVCGAN) for high-quality 3D-aware image synthesis with geometry constraints.
- Score: 48.33860286920389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D-aware image synthesis aims to generate images of objects from multiple
views by learning a 3D representation. However, one key challenge remains:
existing approaches lack geometry constraints, hence usually fail to generate
multi-view consistent images. To address this challenge, we propose Multi-View
Consistent Generative Adversarial Networks (MVCGAN) for high-quality 3D-aware
image synthesis with geometry constraints. By leveraging the underlying 3D
geometry information of generated images, i.e., depth and camera transformation
matrix, we explicitly establish stereo correspondence between views to perform
multi-view joint optimization. In particular, we enforce the photometric
consistency between pairs of views and integrate a stereo mixup mechanism into
the training process, encouraging the model to reason about the correct 3D
shape. Besides, we design a two-stage training strategy with feature-level
multi-view joint optimization to improve the image quality. Extensive
experiments on three datasets demonstrate that MVCGAN achieves the
state-of-the-art performance for 3D-aware image synthesis.
Related papers
- Hi3D: Pursuing High-Resolution Image-to-3D Generation with Video Diffusion Models [112.2625368640425]
High-resolution Image-to-3D model (Hi3D) is a new video diffusion based paradigm that redefines a single image to multi-view images as 3D-aware sequential image generation.
Hi3D first empowers the pre-trained video diffusion model with 3D-aware prior, yielding multi-view images with low-resolution texture details.
arXiv Detail & Related papers (2024-09-11T17:58:57Z) - Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image [28.759158325097093]
Unique3D is a novel image-to-3D framework for efficiently generating high-quality 3D meshes from single-view images.
Our framework features state-of-the-art generation fidelity and strong generalizability.
arXiv Detail & Related papers (2024-05-30T17:59:54Z) - G-NeRF: Geometry-enhanced Novel View Synthesis from Single-View Images [45.66479596827045]
We propose a Geometry-enhanced NeRF (G-NeRF), which seeks to enhance the geometry priors by a geometry-guided multi-view synthesis approach.
To tackle the absence of multi-view supervision for single-view images, we design the depth-aware training approach.
arXiv Detail & Related papers (2024-04-11T04:58:18Z) - MVD-Fusion: Single-view 3D via Depth-consistent Multi-view Generation [54.27399121779011]
We present MVD-Fusion: a method for single-view 3D inference via generative modeling of multi-view-consistent RGB-D images.
We show that our approach can yield more accurate synthesis compared to recent state-of-the-art, including distillation-based 3D inference and prior multi-view generation methods.
arXiv Detail & Related papers (2024-04-04T17:59:57Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - CC3D: Layout-Conditioned Generation of Compositional 3D Scenes [49.281006972028194]
We introduce CC3D, a conditional generative model that synthesizes complex 3D scenes conditioned on 2D semantic scene layouts.
Our evaluations on synthetic 3D-FRONT and real-world KITTI-360 datasets demonstrate that our model generates scenes of improved visual and geometric quality.
arXiv Detail & Related papers (2023-03-21T17:59:02Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - Efficient Geometry-aware 3D Generative Adversarial Networks [50.68436093869381]
Existing 3D GANs are either compute-intensive or make approximations that are not 3D-consistent.
In this work, we improve the computational efficiency and image quality of 3D GANs without overly relying on these approximations.
We introduce an expressive hybrid explicit-implicit network architecture that synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry.
arXiv Detail & Related papers (2021-12-15T08:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.