Stereo-LiDAR Depth Estimation with Deformable Propagation and Learned Disparity-Depth Conversion
- URL: http://arxiv.org/abs/2404.07545v1
- Date: Thu, 11 Apr 2024 08:12:48 GMT
- Title: Stereo-LiDAR Depth Estimation with Deformable Propagation and Learned Disparity-Depth Conversion
- Authors: Ang Li, Anning Hu, Wei Xi, Wenxian Yu, Danping Zou,
- Abstract summary: We propose a novel stereo-LiDAR depth estimation network with Semi-Dense hint Guidance, named SDG-Depth.
Our network includes a deformable propagation module for generating a semi-dense hint map and a confidence map by propagating sparse hints using a learned deformable window.
Our method is both accurate and efficient. The experimental results on benchmark tests show its superior performance.
- Score: 16.164300644900404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and dense depth estimation with stereo cameras and LiDAR is an important task for automatic driving and robotic perception. While sparse hints from LiDAR points have improved cost aggregation in stereo matching, their effectiveness is limited by the low density and non-uniform distribution. To address this issue, we propose a novel stereo-LiDAR depth estimation network with Semi-Dense hint Guidance, named SDG-Depth. Our network includes a deformable propagation module for generating a semi-dense hint map and a confidence map by propagating sparse hints using a learned deformable window. These maps then guide cost aggregation in stereo matching. To reduce the triangulation error in depth recovery from disparity, especially in distant regions, we introduce a disparity-depth conversion module. Our method is both accurate and efficient. The experimental results on benchmark tests show its superior performance. Our code is available at https://github.com/SJTU-ViSYS/SDG-Depth.
Related papers
- OCTraN: 3D Occupancy Convolutional Transformer Network in Unstructured
Traffic Scenarios [0.0]
We propose OCTraN, a transformer architecture that uses iterative-attention to convert 2D image features into 3D occupancy features.
We also develop a self-supervised training pipeline to generalize the model to any scene by eliminating the need for LiDAR ground truth.
arXiv Detail & Related papers (2023-07-20T15:06:44Z) - Robust and accurate depth estimation by fusing LiDAR and Stereo [8.85338187686374]
We propose a precision and robust method for fusing the LiDAR and stereo cameras.
This method fully combines the advantages of the LiDAR and stereo camera.
We evaluate the proposed pipeline on the KITTI benchmark.
arXiv Detail & Related papers (2022-07-13T11:55:15Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - SMD-Nets: Stereo Mixture Density Networks [68.56947049719936]
We propose Stereo Mixture Density Networks (SMD-Nets), a simple yet effective learning framework compatible with a wide class of 2D and 3D architectures.
Specifically, we exploit bimodal mixture densities as output representation and show that this allows for sharp and precise disparity estimates near discontinuities.
We carry out comprehensive experiments on a new high-resolution and highly realistic synthetic stereo dataset, consisting of stereo pairs at 8Mpx resolution, as well as on real-world stereo datasets.
arXiv Detail & Related papers (2021-04-08T16:15:46Z) - Volumetric Propagation Network: Stereo-LiDAR Fusion for Long-Range Depth
Estimation [81.08111209632501]
We propose a geometry-aware stereo-LiDAR fusion network for long-range depth estimation.
We exploit sparse and accurate point clouds as a cue for guiding correspondences of stereo images in a unified 3D volume space.
Our network achieves state-of-the-art performance on the KITTI and the Virtual- KITTI datasets.
arXiv Detail & Related papers (2021-03-24T03:24:46Z) - PLADE-Net: Towards Pixel-Level Accuracy for Self-Supervised Single-View
Depth Estimation with Neural Positional Encoding and Distilled Matting Loss [49.66736599668501]
We propose a self-supervised single-view pixel-level accurate depth estimation network, called PLADE-Net.
Our method shows unprecedented accuracy levels, exceeding 95% in terms of the $delta1$ metric on the KITTI dataset.
arXiv Detail & Related papers (2021-03-12T15:54:46Z) - Direct Depth Learning Network for Stereo Matching [79.3665881702387]
A novel Direct Depth Learning Network (DDL-Net) is designed for stereo matching.
DDL-Net consists of two stages: the Coarse Depth Estimation stage and the Adaptive-Grained Depth Refinement stage.
We show that DDL-Net achieves an average improvement of 25% on the SceneFlow dataset and $12%$ on the DrivingStereo dataset.
arXiv Detail & Related papers (2020-12-10T10:33:57Z) - Wasserstein Distances for Stereo Disparity Estimation [62.09272563885437]
Existing approaches to depth or disparity estimation output a distribution over a set of pre-defined discrete values.
This leads to inaccurate results when the true depth or disparity does not match any of these values.
We address these issues using a new neural network architecture that is capable of outputting arbitrary depth values.
arXiv Detail & Related papers (2020-07-06T21:37:50Z) - Decoder Modulation for Indoor Depth Completion [2.099922236065961]
Depth completion recovers a dense depth map from sensor measurements.
Current methods are mostly tailored for very sparse depth measurements from LiDARs in outdoor settings.
We propose a new model that takes into account the statistical difference between such regions.
arXiv Detail & Related papers (2020-05-18T11:42:42Z) - DELTAS: Depth Estimation by Learning Triangulation And densification of
Sparse points [14.254472131009653]
Multi-view stereo (MVS) is the golden mean between the accuracy of active depth sensing and the practicality of monocular depth estimation.
Cost volume based approaches employing 3D convolutional neural networks (CNNs) have considerably improved the accuracy of MVS systems.
We propose an efficient depth estimation approach by first (a) detecting and evaluating descriptors for interest points, then (b) learning to match and triangulate a small set of interest points, and finally (c) densifying this sparse set of 3D points using CNNs.
arXiv Detail & Related papers (2020-03-19T17:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.