論文の概要: ObjBlur: A Curriculum Learning Approach With Progressive Object-Level Blurring for Improved Layout-to-Image Generation
- arxiv url: http://arxiv.org/abs/2404.07564v1
- Date: Thu, 11 Apr 2024 08:50:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 14:39:15.956163
- Title: ObjBlur: A Curriculum Learning Approach With Progressive Object-Level Blurring for Improved Layout-to-Image Generation
- Title(参考訳): ObjBlur: 改善されたレイアウト・ツー・イメージ生成のためのプログレッシブ・オブジェクト・レベル・ブラリングによるカリキュラム学習アプローチ
- Authors: Stanislav Frolov, Brian B. Moser, Sebastian Palacio, Andreas Dengel,
- Abstract要約: レイアウト・ツー・イメージ生成モデルを改善するための新しいカリキュラム学習手法であるBlurを提案する。
提案手法は,プログレッシブオブジェクトレベルのぼかしをベースとして,トレーニングを効果的に安定化し,生成画像の品質を向上させる。
- 参考スコア(独自算出の注目度): 7.645341879105626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present ObjBlur, a novel curriculum learning approach to improve layout-to-image generation models, where the task is to produce realistic images from layouts composed of boxes and labels. Our method is based on progressive object-level blurring, which effectively stabilizes training and enhances the quality of generated images. This curriculum learning strategy systematically applies varying degrees of blurring to individual objects or the background during training, starting from strong blurring to progressively cleaner images. Our findings reveal that this approach yields significant performance improvements, stabilized training, smoother convergence, and reduced variance between multiple runs. Moreover, our technique demonstrates its versatility by being compatible with generative adversarial networks and diffusion models, underlining its applicability across various generative modeling paradigms. With ObjBlur, we reach new state-of-the-art results on the complex COCO and Visual Genome datasets.
- Abstract(参考訳): 本稿では,レイアウト・ツー・イメージ生成モデルを改善するための新しいカリキュラム学習手法であるObjBlurを提案する。
提案手法は,プログレッシブオブジェクトレベルのぼかしをベースとして,トレーニングを効果的に安定化し,生成画像の品質を向上させる。
このカリキュラム学習戦略は、訓練中の個々の対象や背景に対して、強いぼやけから徐々にクリーンな画像に至るまで、様々なレベルのぼやけを体系的に適用する。
その結果, 本手法は, 性能向上, 安定トレーニング, よりスムーズな収束, 複数ラン間のばらつきの低減をもたらすことがわかった。
さらに, 提案手法は, 生成的対向ネットワークや拡散モデルと互換性があり, 様々な生成的モデリングパラダイムにまたがって適用可能であることを示す。
ObjBlurでは、複雑なCOCOとVisual Genomeデータセットの最先端結果に到達します。
関連論文リスト
- Powerful and Flexible: Personalized Text-to-Image Generation via Reinforcement Learning [40.06403155373455]
個人化されたテキスト・画像生成のための新しい強化学習フレームワークを提案する。
提案手法は、テキストアライメントを維持しながら、視覚的忠実度に大きな差で既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-07-09T08:11:53Z) - Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
画像分類性能を高めるための一般的な戦略は、T2Iモデルによって生成された合成画像でトレーニングセットを増強することである。
本研究では,既存のデータ拡張技術の欠点について検討する。
Diff-Mixと呼ばれる革新的なクラス間データ拡張手法を導入する。
論文 参考訳(メタデータ) (2024-03-28T17:23:45Z) - Active Generation for Image Classification [45.93535669217115]
本稿では,モデルのニーズと特徴に着目し,画像生成の効率性に対処することを提案する。
能動学習の中心的傾向として,ActGenという手法が,画像生成のトレーニング・アウェア・アプローチを取り入れている。
論文 参考訳(メタデータ) (2024-03-11T08:45:31Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
人間-物体相互作用(Human-Object Interaction、HOI)は、人間と物体の相互作用を理解することを目的としている。
本稿では,仮想画像学習(Virtual Image Leaning, VIL)による不均衡分布の影響を軽減することを提案する。
ラベルからイメージへの新たなアプローチであるMultiple Steps Image Creation (MUSIC)が提案され、実際の画像と一貫した分布を持つ高品質なデータセットを作成する。
論文 参考訳(メタデータ) (2023-08-04T10:28:48Z) - Taming Encoder for Zero Fine-tuning Image Customization with
Text-to-Image Diffusion Models [55.04969603431266]
本稿では,ユーザが指定したカスタマイズされたオブジェクトの画像を生成する手法を提案する。
この手法は、従来のアプローチで要求される長大な最適化をバイパスする一般的なフレームワークに基づいている。
提案手法は, 出力品質, 外観の多様性, 被写体忠実度を考慮した画像合成が可能であることを示す。
論文 参考訳(メタデータ) (2023-04-05T17:59:32Z) - ObjectStitch: Generative Object Compositing [43.206123360578665]
本研究では,条件付き拡散モデルを用いたオブジェクト合成のための自己教師型フレームワークを提案する。
我々のフレームワークは、手動ラベリングを必要とせず、生成したオブジェクトの視点、幾何学、色、影を変換することができる。
本手法は, 実世界の様々な画像に対するユーザ研究において, 合成結果画像の写実性と忠実性の両方において, 関連ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-12-02T02:15:13Z) - Modeling Image Composition for Complex Scene Generation [77.10533862854706]
本稿では,レイアウト・ツー・イメージ生成タスクにおける最先端結果を実現する手法を提案する。
本稿では,RGB画像をパッチトークンに圧縮した後,オブジェクト・トゥ・オブジェクト,オブジェクト・トゥ・パッチ,パッチ・トゥ・パッチの依存関係を探索するTransformer with Focal Attention (TwFA)を提案する。
論文 参考訳(メタデータ) (2022-06-02T08:34:25Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - Generating Annotated High-Fidelity Images Containing Multiple Coherent
Objects [10.783993190686132]
コンテキスト情報を明示的に必要とせずに、複数のオブジェクトで画像を合成できるマルチオブジェクト生成フレームワークを提案する。
我々は,Multi-MNISTおよびCLEVRデータセットを用いた実験により,コヒーレンシーと忠実さの保存方法を示す。
論文 参考訳(メタデータ) (2020-06-22T11:33:55Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。