論文の概要: Learning Geospatial Region Embedding with Heterogeneous Graph
- arxiv url: http://arxiv.org/abs/2405.14135v1
- Date: Thu, 23 May 2024 03:19:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 19:15:00.595854
- Title: Learning Geospatial Region Embedding with Heterogeneous Graph
- Title(参考訳): 不均一グラフを用いた地理空間領域の学習
- Authors: Xingchen Zou, Jiani Huang, Xixuan Hao, Yuhao Yang, Haomin Wen, Yibo Yan, Chao Huang, Yuxuan Liang,
- Abstract要約: 様々な下流タスクに対する包括的領域埋め込みを学習するための有効なヘテロジニアスグラフ構造であるGeoHGを提案する。
具体的には、地理的領域分割とPOI(point-of-interest)統合による衛星画像表現学習を、表現的地域内特徴のために調整する。
GeoHGは情報的空間依存性と社会環境特性を強力なヘテロジニアスグラフに統合し、高次の地域間関係の明示的なモデリングを促進する。
- 参考スコア(独自算出の注目度): 16.864563545518124
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning effective geospatial embeddings is crucial for a series of geospatial applications such as city analytics and earth monitoring. However, learning comprehensive region representations presents two significant challenges: first, the deficiency of effective intra-region feature representation; and second, the difficulty of learning from intricate inter-region dependencies. In this paper, we present GeoHG, an effective heterogeneous graph structure for learning comprehensive region embeddings for various downstream tasks. Specifically, we tailor satellite image representation learning through geo-entity segmentation and point-of-interest (POI) integration for expressive intra-regional features. Furthermore, GeoHG unifies informative spatial interdependencies and socio-environmental attributes into a powerful heterogeneous graph to encourage explicit modeling of higher-order inter-regional relationships. The intra-regional features and inter-regional correlations are seamlessly integrated by a model-agnostic graph learning framework for diverse downstream tasks. Extensive experiments demonstrate the effectiveness of GeoHG in geo-prediction tasks compared to existing methods, even under extreme data scarcity (with just 5% of training data). With interpretable region representations, GeoHG exhibits strong generalization capabilities across regions. We will release code and data upon paper notification.
- Abstract(参考訳): 効果的な地理空間埋め込みの学習は、都市分析や地球モニタリングなど、一連の地理空間的応用に不可欠である。
しかし、包括的領域表現の学習は、第一に、効果的な領域内特徴表現の欠如、第二に、複雑な領域間の依存関係から学ぶことの難しさの2つの重要な課題を示す。
本稿では,様々な下流タスクに対する包括的領域埋め込みを学習するための有効なヘテロジニアスグラフ構造であるGeoHGを提案する。
具体的には、地理的領域分割とPOI(point-of-interest)統合による衛星画像表現学習を、表現的地域内特徴のために調整する。
さらに、GeoHGは情報的空間依存性と社会環境特性を強力なヘテロジニアスグラフに統合し、高次の地域間関係の明示的なモデリングを促進する。
地域内特徴と地域間相関は、様々な下流タスクのためのモデルに依存しないグラフ学習フレームワークによってシームレスに統合される。
過剰なデータ不足下でも(トレーニングデータの5%しか持たない)、GeoHGが既存の方法と比較してジオプレディションタスクにおける有効性を示す実験が広く行われている。
解釈可能な領域表現により、GeoHGは領域間で強力な一般化能力を示す。
コードとデータは、紙の通知で公開します。
関連論文リスト
- Enhanced Urban Region Profiling with Adversarial Self-Supervised
Learning [8.328861861105889]
本研究では,EUPASと呼ばれる都市域埋め込みのための自己教師付きグラフ協調フィルタリングモデルを提案する。
具体的には、人間の移動データ、関心点(POI)情報、地域ごとの地理的近傍の詳細を含む地域不均一グラフをモデルに入力する。
このモデルは、GCNとマルチヘッドアテンションを通じて、リージョン内およびリージョン間依存関係を保存する領域埋め込みを生成する。
論文 参考訳(メタデータ) (2024-02-02T06:06:45Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
中国の地理的再ランクタスクは、検索された候補者の中で最も関連性の高い住所を見つけることを目的としている。
そこで我々は,中国語の地理的意味論をより効果的に統合する,革新的なフレームワークであるGeo-Encoderを提案する。
論文 参考訳(メタデータ) (2023-09-04T13:44:50Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
我々はGeoGLUEと呼ばれるGeoGraphic Language Understanding Evaluationベンチマークを提案する。
オープンソースの地理資源からデータを収集し、6つの自然言語理解タスクを導入する。
我々は,GeoGLUEベンチマークの有効性と意義を示す一般ベースラインの評価実験と解析を行った。
論文 参考訳(メタデータ) (2023-05-11T03:21:56Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
地理的ロバスト性の問題について検討し、3つの主要な貢献を行う。
まず,地理的適応のための大規模データセットGeoNetを紹介する。
第2に、シーンコンテキストにおける大きな変化から、ドメインシフトの主な原因が生じるという仮説を立てる。
第3に、最先端の教師なしドメイン適応アルゴリズムとアーキテクチャを広範囲に評価する。
論文 参考訳(メタデータ) (2023-03-27T17:59:34Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - Urban Region Profiling via A Multi-Graph Representation Learning
Framework [0.0]
本研究では,都市域のプロファイリングのための多グラフ代表学習フレームワークであるRerea2Vecを提案する。
実世界のデータセットの実験によると、Rerea2Vecは3つのアプリケーションで使用でき、最先端のベースラインをすべて上回っている。
論文 参考訳(メタデータ) (2022-02-04T11:05:37Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization [54.00111565818903]
クロスビューなジオローカライゼーションは、異なるプラットフォームから同じ地理的ターゲットの画像を見つけることである。
既存の手法は通常、画像センター内の地理的ターゲットの微細な特徴をマイニングすることに集中している。
我々は、文脈情報を活用するために、ローカルパターンネットワーク(LPN)と呼ばれるシンプルで効果的なディープニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-08-26T16:06:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。