論文の概要: Deep learning-driven pulmonary artery and vein segmentation reveals demography-associated vasculature anatomical differences
- arxiv url: http://arxiv.org/abs/2404.07671v2
- Date: Sun, 01 Dec 2024 11:49:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 20:23:02.500051
- Title: Deep learning-driven pulmonary artery and vein segmentation reveals demography-associated vasculature anatomical differences
- Title(参考訳): Deep Learning-driven lung artery and vein segmentation revealed with Demography-associated vasculature anatomical difference
- Authors: Yuetan Chu, Gongning Luo, Longxi Zhou, Shaodong Cao, Guolin Ma, Xianglin Meng, Juexiao Zhou, Changchun Yang, Dexuan Xie, Dan Mu, Ricardo Henao, Gianluca Setti, Xigang Xiao, Lianming Wu, Zhaowen Qiu, Xin Gao,
- Abstract要約: 非造影CTおよび肺動脈造影(CTA)におけるHiPaS(Hi-abundant lung artery-vein)の有用性
精巧な手書きアノテーションを用いた1,073CTボリュームのHiPaSを,確立した多中心データセット上で訓練し,検証した。
- 参考スコア(独自算出の注目度): 17.604980531718542
- License:
- Abstract: Pulmonary artery-vein segmentation is crucial for disease diagnosis and surgical planning and is traditionally achieved by Computed Tomography Pulmonary Angiography (CTPA). However, concerns regarding adverse health effects from contrast agents used in CTPA have constrained its clinical utility. In contrast, identifying arteries and veins using non-contrast CT, a conventional and low-cost clinical examination routine, has long been considered impossible. Here we propose a High-abundant Pulmonary Artery-vein Segmentation (HiPaS) framework achieving accurate artery-vein segmentation on both non-contrast CT and CTPA across various spatial resolutions. HiPaS first performs spatial normalization on raw CT volumes via a super-resolution module, and then iteratively achieves segmentation results at different branch levels by utilizing the lower-level vessel segmentation as a prior for higher-level vessel segmentation. We trained and validated HiPaS on our established multi-centric dataset comprising 1,073 CT volumes with meticulous manual annotations. Both quantitative experiments and clinical evaluation demonstrated the superior performance of HiPaS, achieving an average dice score of 91.8% and a sensitivity of 98.0%. Further experiments showed the non-inferiority of HiPaS segmentation on non-contrast CT compared to segmentation on CTPA. Employing HiPaS, we have conducted an anatomical study of pulmonary vasculature on 11,784 participants in China (six sites), discovering a new association of pulmonary vessel anatomy with sex, age, and disease states: vessel abundance suggests a significantly higher association with females than males with slightly decreasing with age, and is also influenced by certain diseases, under the controlling of lung volumes.
- Abstract(参考訳): 肺動脈-肺動脈分画は疾患の診断と外科的計画に不可欠であり,CTPA(Computed Tomography lung angiography)によって伝統的に達成されている。
しかしCTPAで使用される造影剤による有害な健康影響に関する懸念は臨床効果を制限している。
対照的に, 従来, 低コストな臨床検査法である非造影CTによる動脈・静脈の同定は, 長い間不可能と考えられてきた。
そこで本研究では,非造影CTとCTPAの両方で高精度な動脈-静脈分画を実現するHiPaS(High-abundant lung Artery-vein Segmentation)フレームワークを提案する。
HiPaSは、まず超解像モジュールを用いて生CTボリュームの空間正規化を行い、次いで、高次血管分割の先行として下層血管分割を利用することにより、異なる分岐レベルで分割結果を反復的に達成する。
精巧な手書きアノテーションを用いた1,073CTボリュームのHiPaSを,確立した多中心データセット上で訓練し,検証した。
定量的実験と臨床評価の両方で、HiPaSの優れた性能を示し、平均ダイススコアは91.8%、感度は98.0%であった。
また,非造影CTにおけるHiPaSセグメンテーションはCTPAのセグメンテーションと比較して非偽陰性であった。
HiPaSを用いて,中国の11,784人(6か所)の肺血管の解剖学的検討を行い,性別,年齢,疾患状態と新たな肺血管の解剖学的関連性を見出した。
関連論文リスト
- AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
CCTA画像を用いた冠動脈セグメンテーションのための注意誘導型3Dディープネットワーク(AGFA-Net)を提案する。
AGFA-Netは注意機構と機能改善モジュールを活用して、有能な特徴を捉え、セグメンテーションの精度を高める。
1000個のCCTAスキャンからなるデータセットの評価はAGFA-Netの優れた性能を示し、平均Dice係数は86.74%、ハウスドルフ距離は0.23mmである。
論文 参考訳(メタデータ) (2024-06-13T01:04:47Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest
CT Images [1.8692254863855962]
胸部CT画像から肺血管セグメンテーションの枠組みと改善過程について検討した。
アプローチの鍵となるのは、3つの軸から2.5D区分けネットワークを応用し、堅牢で完全に自動化された肺血管区分け結果を示す。
提案手法は,他のネットワーク構造よりも大きなマージンで優れ,平均DICEスコア0.9272,精度0.9310を極端に上回っている。
論文 参考訳(メタデータ) (2021-07-03T21:46:29Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
疾患のある肺領域は、しばしばCT画像に高密度ゾーンを生成し、損傷した葉を特定するアルゴリズムの実行を制限する。
この影響は、肺葉を分節する機械学習手法の改善を動機づけた。
このアプローチは、放射線科医のロバストなツールとして臨床現場で容易に採用することができる。
論文 参考訳(メタデータ) (2021-05-11T17:10:25Z) - Automatic Pulmonary Artery and Vein Separation Algorithm Based on
Multitask Classification Network and Topology Reconstruction in Chest CT
Images [6.7068805048290425]
胸部CT像から肺動脈と静脈を自動的に分離する新しい方法を提案する。
提案手法は非コントラスト胸部CTの平均精度96.2%を達成した。
論文 参考訳(メタデータ) (2021-03-22T11:25:45Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
マルチタスク型マルチスライス深層学習システム(M3Lung-Sys)を提案する。
COVID-19とHealthy, H1N1, CAPとの鑑別に加えて, M3 Lung-Sysも関連病変の部位を特定できる。
論文 参考訳(メタデータ) (2020-10-07T06:22:24Z) - Segmentation of Pulmonary Opacification in Chest CT Scans of COVID-19
Patients [3.140265238474236]
胸部CT(CT)スキャンにおける肺不透明化パターンのセグメンテーションのためのオープンソースモデルについて検討した。
世界中の医療センターで663個の胸部CT検査を行った。
本研究の最適モデルは,テストセットで0.76オパシティ・インターセクション・オーバー・ユニオンスコアを達成し,ドメイン適応を成功させ,専門家の1.7%以内のオパシティの容積を予測する。
論文 参考訳(メタデータ) (2020-07-07T17:32:24Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z) - Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble [77.5625174267105]
膵管腺癌(PDAC)は最も致命的ながんの1つである。
複数のフェーズは単一のフェーズよりも多くの情報を提供するが、それらは整列せず、テクスチャにおいて不均一である。
PDAC検出性能を高めるために,これらすべてのアライメントのアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-03-18T19:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。