ODA: Observation-Driven Agent for integrating LLMs and Knowledge Graphs
- URL: http://arxiv.org/abs/2404.07677v2
- Date: Tue, 4 Jun 2024 07:16:14 GMT
- Title: ODA: Observation-Driven Agent for integrating LLMs and Knowledge Graphs
- Authors: Lei Sun, Zhengwei Tao, Youdi Li, Hiroshi Arakawa,
- Abstract summary: We introduce Observation-Driven Agent (ODA), a novel AI framework tailored for tasks involving knowledge graphs (KGs)
ODA incorporates KG reasoning abilities via global observation, which enhances reasoning capabilities through a cyclical paradigm of observation, action, and reflection.
ODA demonstrates state-of-the-art performance on several datasets, notably achieving accuracy improvements of 12.87% and 8.9%.
- Score: 4.3508051546373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Large Language Models (LLMs) and knowledge graphs (KGs) has achieved remarkable success in various natural language processing tasks. However, existing methodologies that integrate LLMs and KGs often navigate the task-solving process solely based on the LLM's analysis of the question, overlooking the rich cognitive potential inherent in the vast knowledge encapsulated in KGs. To address this, we introduce Observation-Driven Agent (ODA), a novel AI agent framework tailored for tasks involving KGs. ODA incorporates KG reasoning abilities via global observation, which enhances reasoning capabilities through a cyclical paradigm of observation, action, and reflection. Confronting the exponential explosion of knowledge during observation, we innovatively design a recursive observation mechanism. Subsequently, we integrate the observed knowledge into the action and reflection modules. Through extensive experiments, ODA demonstrates state-of-the-art performance on several datasets, notably achieving accuracy improvements of 12.87% and 8.9%.
Related papers
- Towards Knowledge Checking in Retrieval-augmented Generation: A Representation Perspective [48.40768048080928]
Retrieval-Augmented Generation (RAG) systems have shown promise in enhancing the performance of Large Language Models (LLMs)
This work aims to provide a systematic study on knowledge checking in RAG systems.
arXiv Detail & Related papers (2024-11-21T20:39:13Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs [55.317267269115845]
Chain-of-Knowledge (CoK) is a comprehensive framework for knowledge reasoning.
CoK includes methodologies for both dataset construction and model learning.
We conduct extensive experiments with KnowReason.
arXiv Detail & Related papers (2024-06-30T10:49:32Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
Large Language Model Agents (LMAs) face issues such as information hallucinations, catastrophic forgetting, and limitations in processing long contexts.
This paper introduces a KG-RAG (Knowledge Graph-Retrieval Augmented Generation) pipeline to enhance the knowledge capabilities of LMAs.
Preliminary experiments on the ComplexWebQuestions dataset demonstrate notable improvements in the reduction of hallucinated content.
arXiv Detail & Related papers (2024-05-20T14:03:05Z) - Empowering Small-Scale Knowledge Graphs: A Strategy of Leveraging General-Purpose Knowledge Graphs for Enriched Embeddings [3.7759315989669058]
We introduce a framework for enriching embeddings of small-scale domain-specific Knowledge Graphs with well-established general-purpose KGs.
Experimental evaluations demonstrate a notable enhancement, with up to a 44% increase observed in the Hits@10 metric.
This relatively unexplored research direction can catalyze more frequent incorporation of KGs in knowledge-intensive tasks.
arXiv Detail & Related papers (2024-05-17T12:46:23Z) - Fusing Domain-Specific Content from Large Language Models into Knowledge Graphs for Enhanced Zero Shot Object State Classification [0.8232137862012223]
This study investigates the potential of Large Language Models (LLMs) in generating and providing domain-specific information.
To achieve this, an LLM is integrated into a pipeline that utilizes Knowledge Graphs and pre-trained semantic vectors.
Our findings reveal that the integration of LLM-based embeddings, in combination with general-purpose pre-trained embeddings, leads to substantial performance improvements.
arXiv Detail & Related papers (2024-03-18T18:08:44Z) - Enhancing Multi-Hop Knowledge Graph Reasoning through Reward Shaping
Techniques [5.561202401558972]
This research elucidates the employment of reinforcement learning strategies, notably the REINFORCE algorithm, to navigate the intricacies inherent in multi-hop Knowledge Graphs (KG-R)
By partitioning the Unified Medical Language System (UMLS) benchmark dataset into rich and sparse subsets, we investigate the efficacy of pre-trained BERT embeddings and Prompt Learning methodologies to refine the reward shaping process.
arXiv Detail & Related papers (2024-03-09T05:34:07Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to leverage external knowledge.
Existing RAG models often treat LLMs as passive recipients of information.
We introduce ActiveRAG, a multi-agent framework that mimics human learning behavior.
arXiv Detail & Related papers (2024-02-21T06:04:53Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities [66.36633042421387]
Large Language Models (LLMs) for Knowledge Graph (KG) construction and reasoning evaluated.
We propose AutoKG, a multi-agent-based approach employing LLMs and external sources for KG construction and reasoning.
arXiv Detail & Related papers (2023-05-22T15:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.