論文の概要: Streaming detection of significant delay changes in public transport systems
- arxiv url: http://arxiv.org/abs/2404.07860v1
- Date: Thu, 11 Apr 2024 15:54:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 13:20:46.426041
- Title: Streaming detection of significant delay changes in public transport systems
- Title(参考訳): 公共交通機関における遅延変化のストリーミング検出
- Authors: Przemysław Wrona, Maciej Grzenda, Marcin Luckner,
- Abstract要約: 遅延などの公共交通機関の混乱は、モビリティの選択に悪影響を及ぼす可能性がある。
本稿では,遅延検出手法と参照アーキテクチャを提案する。
方法は、スケジュールからの逸脱として定義される遅延の計算を補完することができる。
- 参考スコア(独自算出の注目度): 0.9217021281095907
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Public transport systems are expected to reduce pollution and contribute to sustainable development. However, disruptions in public transport such as delays may negatively affect mobility choices. To quantify delays, aggregated data from vehicle locations systems are frequently used. However, delays observed at individual stops are caused inter alia by fluctuations in running times and propagation of delays occurring in other locations. Hence, in this work, we propose both the method detecting significant delays and reference architecture, relying on stream processing engines, in which the method is implemented. The method can complement the calculation of delays defined as deviation from schedules. This provides both online rather than batch identification of significant and repetitive delays, and resilience to the limited quality of location data. The method we propose can be used with different change detectors, such as ADWIN, applied to location data stream shuffled to individual edges of a transport graph. It can detect in an online manner at which edges statistically significant delays are observed and at which edges delays arise and are reduced. Detections can be used to model mobility choices and quantify the impact of repetitive rather than random disruptions on feasible trips with multimodal trip modelling engines. The evaluation performed with the public transport data of over 2000 vehicles confirms the merits of the method and reveals that a limited-size subgraph of a transport system graph causes statistically significant delays
- Abstract(参考訳): 公共交通機関は汚染を減らし、持続可能な開発に寄与することが期待されている。
しかし、遅延などの公共交通機関の混乱は移動選択に悪影響を及ぼす可能性がある。
遅延を定量化するために、車両位置システムからの集約されたデータが頻繁に使用される。
しかし,各停留所で観測される遅延は,走行時間の変動や,他の場所で発生する遅延の伝播によって,エイリアス間に生じる。
そこで本研究では,提案手法が実装されているストリーム処理エンジンに頼って,重要な遅延を検出する手法と参照アーキテクチャの両方を提案する。
この方法は、スケジュールからの逸脱として定義される遅延の計算を補完することができる。
これにより、重要かつ反復的な遅延のバッチ識別よりも、ロケーションデータの限られた品質に対するレジリエンスをオンラインで実現する。
提案手法は,移動グラフの個々のエッジにシャッフルされた位置データストリームに対して,ADWINなどの異なる変化検出器を用いて適用することができる。
エッジが統計的に重要な遅延を観測し、エッジが遅延して減少するオンラインな方法で検出することができる。
検出はモビリティの選択をモデル化し、マルチモーダルトリップ・モデリングエンジンで実現可能なトリップに対するランダムな乱れよりも繰り返しの影響を定量化するために使用することができる。
2000台以上の車両の公共交通データを用いて行った評価は、この方法の利点を確認し、輸送システムグラフの限られたサイズのサブグラフが統計的に重大な遅延を引き起こすことを明らかにする。
関連論文リスト
- DelayPTC-LLM: Metro Passenger Travel Choice Prediction under Train Delays with Large Language Models [31.509436717815102]
本稿では,大規模言語モデル(DelayPTC-LLM)によるメトロ遅延を考慮した旅行選択予測手法を提案する。
従来の予測モデルとDelayPTC-LLMの比較分析は、輸送システムの破壊下で一般的に発生する複雑なスパースデータセットを扱う上で、LLMの優れた能力を示している。
論文 参考訳(メタデータ) (2024-09-28T13:09:15Z) - Unveiling Delay Effects in Traffic Forecasting: A Perspective from
Spatial-Temporal Delay Differential Equations [20.174094418301245]
交通流予測は交通計画と管理の基本的な研究課題である。
近年,グラフニューラルネットワーク (GNN) とリカレントニューラルネットワーク (RNN) は交通流予測のための空間的時間的相関を捉えることに成功している。
1) GNNでのメッセージパッシングは即時であり、実際には近隣ノード間の空間的メッセージインタラクションは遅延する可能性がある。
論文 参考訳(メタデータ) (2024-02-02T08:55:23Z) - MTD: Multi-Timestep Detector for Delayed Streaming Perception [0.5439020425819]
ストリーミング知覚は、自律運転システムの遅延と精度を評価するために使用される、世界の現在の状態を報告するタスクである。
本稿では,マルチブランチ将来の予測に動的ルーティングを利用するエンドツーエンド検出器MTDを提案する。
提案手法はArgoverse-HDデータセットを用いて評価され,実験結果から,様々な遅延設定における最先端性能が得られたことが示された。
論文 参考訳(メタデータ) (2023-09-13T06:23:58Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Transfer Learning for Fault Diagnosis of Transmission Lines [55.971052290285485]
事前学習されたLeNet-5畳み込みニューラルネットワークに基づく新しい伝達学習フレームワークを提案する。
ソースニューラルネットワークから知識を転送して、異種ターゲットデータセットを予測することで、異なる伝送ラインの長さとインピーダンスの障害を診断することができる。
論文 参考訳(メタデータ) (2022-01-20T06:36:35Z) - Time Delay Estimation of Traffic Congestion Propagation based on
Transfer Entropy [2.6184533346117793]
本稿では,ラグ特異的トランスファーエントロピー(TE)を用いた道路間交通渋滞伝播の時間遅延推定手法を提案する。
提案手法は,大韓民国のGPSナビゲーションシステムから得られたシミュレーションデータと実ユーザ軌道データを用いて検証した。
論文 参考訳(メタデータ) (2021-08-15T10:58:59Z) - Online Metro Origin-Destination Prediction via Heterogeneous Information
Aggregation [99.54200992904721]
我々は、ODとDOの進化パターンを共同で学習するために、HIAM(Heterogeneous Information Aggregation Machine)と呼ばれるニューラルネットワークモジュールを提案する。
ODモデリングブランチは、未完成な順序の潜在的な目的地を明示的に推定し、不完全OD行列の情報を補完する。
DOモデリングブランチは、DO行列を入力として、DOライダーシップの時空間分布をキャプチャする。
提案したHIAMに基づいて,将来のODおよびDOライダーを同時に予測する統合Seq2Seqネットワークを開発した。
論文 参考訳(メタデータ) (2021-07-02T10:11:51Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
動脈交通予測は 現代のインテリジェント交通システムの発展に 重要な役割を担っています
動脈交通予測に関する既存の研究の多くは、ループセンサからの流量と占有率の時間的測定のみを考慮し、上流と下流の検出器間のリッチな空間的関係を無視している。
我々は,信号タイミング計画から発生する空間情報を用いて,深層学習アプローチである拡散畳み込みリカレントニューラルネットワークを強化することで,このギャップを埋める。
論文 参考訳(メタデータ) (2020-12-25T01:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。