A Parsimonious Setup for Streamflow Forecasting using CNN-LSTM
- URL: http://arxiv.org/abs/2404.07924v1
- Date: Thu, 11 Apr 2024 17:10:57 GMT
- Title: A Parsimonious Setup for Streamflow Forecasting using CNN-LSTM
- Authors: Sudan Pokharel, Tirthankar Roy,
- Abstract summary: We extend the application of CNN-LSTMs to time series settings, leveraging lagged streamflow data to predict streamflow.
Our results show a substantial improvement in predictive performance in 21 out of 32 HUC8 basins in Nebraska.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Significant strides have been made in advancing streamflow predictions, notably with the introduction of cutting-edge machine-learning models. Predominantly, Long Short-Term Memories (LSTMs) and Convolution Neural Networks (CNNs) have been widely employed in this domain. While LSTMs are applicable in both rainfall-runoff and time series settings, CNN-LSTMs have primarily been utilized in rainfall-runoff scenarios. In this study, we extend the application of CNN-LSTMs to time series settings, leveraging lagged streamflow data in conjunction with precipitation and temperature data to predict streamflow. Our results show a substantial improvement in predictive performance in 21 out of 32 HUC8 basins in Nebraska, showcasing noteworthy increases in the Kling-Gupta Efficiency (KGE) values. These results highlight the effectiveness of CNN-LSTMs in time series settings, particularly for spatiotemporal hydrological modeling, for more accurate and robust streamflow predictions.
Related papers
- Application of Long-Short Term Memory and Convolutional Neural Networks for Real-Time Bridge Scour Prediction [0.0]
We exploit the power of deep learning algorithms to forecast scour depth variations around bridge piers based on historical sensor monitoring data.
We investigated the performance of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) models for real-time scour forecasting.
arXiv Detail & Related papers (2024-04-25T12:04:36Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding.
Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration.
We introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction against varying observation periods.
arXiv Detail & Related papers (2024-03-31T17:18:57Z) - A Distance Correlation-Based Approach to Characterize the Effectiveness of Recurrent Neural Networks for Time Series Forecasting [1.9950682531209158]
We provide an approach to link time series characteristics with RNN components via the versatile metric of distance correlation.
We empirically show that the RNN activation layers learn the lag structures of time series well.
We also show that the activation layers cannot adequately model moving average and heteroskedastic time series processes.
arXiv Detail & Related papers (2023-07-28T22:32:08Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
It aims to develop reduced-order/surrogate models for turbulent flow simulations using Machine Learning.
Different model structures are analyzed, with U-NET structures performing better than the standard FNO in accuracy and stability.
arXiv Detail & Related papers (2023-07-25T14:09:53Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - Temporal Fusion Transformers for Streamflow Prediction: Value of
Combining Attention with Recurrence [0.0]
This work tests the hypothesis that combining recurrence with attention can improve streamflow prediction.
We set up the Temporal Fusion Transformer (TFT) architecture, a model that combines both of these aspects and has never been applied in hydrology before.
Our results demonstrate that TFT indeed exceeds the performance benchmark set by the LSTM and Transformers for streamflow prediction.
arXiv Detail & Related papers (2023-05-21T03:58:16Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Machine Learning for Postprocessing Ensemble Streamflow Forecasts [0.0]
We integrate dynamical modeling with machine learning to demonstrate the enhanced quality of streamflow forecasts at short-to medium-range (1 - 7 days)
We employ a Long Short-Term Memory (LSTM) neural network to correct forecast biases in raw ensemble streamflow forecasts obtained from dynamical modeling.
The verification results show that the LSTM can improve streamflow forecasts relative to climatological, temporal persistence, deterministic, and raw ensemble forecasts.
arXiv Detail & Related papers (2021-06-15T18:46:30Z) - Stream-Flow Forecasting of Small Rivers Based on LSTM [3.921808417990452]
This paper tries to provide a new method to do the forecast using the Long-Short Term Memory (LSTM) deep learning model.
We collected the stream flow data from one hydrologic station in Tunxi, China, and precipitation data from 11 rainfall stations around to forecast the stream flow data.
We evaluated the prediction results using three criteria: root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2)
arXiv Detail & Related papers (2020-01-16T07:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.