CNN-LSTM Hybrid Deep Learning Model for Remaining Useful Life Estimation
- URL: http://arxiv.org/abs/2412.15998v1
- Date: Fri, 20 Dec 2024 15:48:57 GMT
- Title: CNN-LSTM Hybrid Deep Learning Model for Remaining Useful Life Estimation
- Authors: Muthukumar G, Jyosna Philip,
- Abstract summary: We propose a hybrid approach combining Convolutional Neural Networks with Long Short-Term Memory (LSTM) networks for RUL estimation.
Our results demonstrate that the hybrid CNN-LSTM model achieves the highest accuracy, offering a superior score compared to the other methods.
- Score: 0.0
- License:
- Abstract: Remaining Useful Life (RUL) of a component or a system is defined as the length from the current time to the end of the useful life. Accurate RUL estimation plays a crucial role in Predictive Maintenance applications. Traditional regression methods, both linear and non-linear, have struggled to achieve high accuracy in this domain. While Convolutional Neural Networks (CNNs) have shown improved accuracy, they often overlook the sequential nature of the data, relying instead on features derived from sliding windows. Since RUL prediction inherently involves multivariate time series analysis, robust sequence learning is essential. In this work, we propose a hybrid approach combining Convolutional Neural Networks with Long Short-Term Memory (LSTM) networks for RUL estimation. Although CNN-based LSTM models have been applied to sequence prediction tasks in financial forecasting, this is the first attempt to adopt this approach for RUL estimation in prognostics. In this approach, CNN is first employed to efficiently extract features from the data, followed by LSTM, which uses these extracted features to predict RUL. This method effectively leverages sensor sequence information, uncovering hidden patterns within the data, even under multiple operating conditions and fault scenarios. Our results demonstrate that the hybrid CNN-LSTM model achieves the highest accuracy, offering a superior score compared to the other methods.
Related papers
- Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.
Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.
We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - SAL-CNN: Estimate the Remaining Useful Life of Bearings Using
Time-frequency Information [0.0]
In modern industrial production, the prediction ability of the remaining useful life (RUL) of bearings directly affects the safety and stability of the system.
In this paper, an end-to-end RUL prediction method is proposed, which uses short-time Fourier transform (STFT) as preprocessing.
Considering the time correlation of signal sequences, a long and short-term memory network is designed in CNN, incorporating the convolutional block attention module.
arXiv Detail & Related papers (2022-04-11T12:27:31Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
In this study, we evaluate the performance of NLLS, the RNN-based method and a multilayer perceptron (MLP) on datasets rat and human brain.
We showed that the proposed RNN-based fitting approach had the advantage of highly reduced computation time over NLLS.
arXiv Detail & Related papers (2022-03-01T16:33:15Z) - Process Outcome Prediction: CNN vs. LSTM (with Attention) [0.15229257192293202]
We study the performance of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) on time series problems.
Our findings show that all these neural networks achieve satisfactory to high predictive power.
We argue that CNNs' speed, early predictive power and robustness should pave the way for their application in process outcome prediction.
arXiv Detail & Related papers (2021-04-14T15:38:32Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
The remaining Useful Life (RUL) of equipment is defined as the duration between the current time and its failure.
We propose an end-to-end deep learning model based on multi-layer perceptron and long short-term memory layers (LSTM) to predict the RUL.
We will discuss how the proposed end-to-end model is able to achieve such good results and compare it to other deep learning and state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T16:45:18Z) - Evaluation of deep learning models for multi-step ahead time series
prediction [1.3764085113103222]
We present an evaluation study that compares the performance of deep learning models for multi-step ahead time series prediction.
Our deep learning methods compromise of simple recurrent neural networks, long short term memory (LSTM) networks, bidirectional LSTM, encoder-decoder LSTM networks, and convolutional neural networks.
arXiv Detail & Related papers (2021-03-26T04:07:11Z) - Meta-Learning for Koopman Spectral Analysis with Short Time-series [49.41640137945938]
Existing methods require long time-series for training neural networks.
We propose a meta-learning method for estimating embedding functions from unseen short time-series.
We experimentally demonstrate that the proposed method achieves better performance in terms of eigenvalue estimation and future prediction.
arXiv Detail & Related papers (2021-02-09T07:19:19Z) - Automatic Remaining Useful Life Estimation Framework with Embedded
Convolutional LSTM as the Backbone [5.927250637620123]
We propose a new LSTM variant called embedded convolutional LSTM (E NeuralTM)
In ETM a group of different 1D convolutions is embedded into the LSTM structure. Through this, the temporal information is preserved between and within windows.
We show the superiority of our proposed ETM approach over the state-of-the-art approaches on several widely used benchmark data sets for RUL Estimation.
arXiv Detail & Related papers (2020-08-10T08:34:20Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
We evaluate the effectiveness of continual learning methods for processing sequential data with recurrent neural networks (RNNs)
We shed light on the particularities that arise when applying weight-importance methods, such as elastic weight consolidation, to RNNs.
We show that the performance of weight-importance methods is not directly affected by the length of the processed sequences, but rather by high working memory requirements.
arXiv Detail & Related papers (2020-06-22T10:05:12Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.