Learning Efficient and Fair Policies for Uncertainty-Aware Collaborative Human-Robot Order Picking
- URL: http://arxiv.org/abs/2404.08006v1
- Date: Tue, 9 Apr 2024 11:45:16 GMT
- Title: Learning Efficient and Fair Policies for Uncertainty-Aware Collaborative Human-Robot Order Picking
- Authors: Igor G. Smit, Zaharah Bukhsh, Mykola Pechenizkiy, Kostas Alogariastos, Kasper Hendriks, Yingqian Zhang,
- Abstract summary: In collaborative human-robot order picking systems, human pickers and Autonomous Mobile Robots (AMRs) travel independently through a warehouse and meet at pick locations where pickers load items onto AMRs.
We propose a novel multi-objective Deep Reinforcement Learning (DRL) approach to learn effective allocation policies to pick efficiency while also aiming to improve workload fairness amongst human pickers.
- Score: 11.997524293204368
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In collaborative human-robot order picking systems, human pickers and Autonomous Mobile Robots (AMRs) travel independently through a warehouse and meet at pick locations where pickers load items onto the AMRs. In this paper, we consider an optimization problem in such systems where we allocate pickers to AMRs in a stochastic environment. We propose a novel multi-objective Deep Reinforcement Learning (DRL) approach to learn effective allocation policies to maximize pick efficiency while also aiming to improve workload fairness amongst human pickers. In our approach, we model the warehouse states using a graph, and define a neural network architecture that captures regional information and effectively extracts representations related to efficiency and workload. We develop a discrete-event simulation model, which we use to train and evaluate the proposed DRL approach. In the experiments, we demonstrate that our approach can find non-dominated policy sets that outline good trade-offs between fairness and efficiency objectives. The trained policies outperform the benchmarks in terms of both efficiency and fairness. Moreover, they show good transferability properties when tested on scenarios with different warehouse sizes. The implementation of the simulation model, proposed approach, and experiments are published.
Related papers
- SRAP-Agent: Simulating and Optimizing Scarce Resource Allocation Policy with LLM-based Agent [45.41401816514924]
We propose an innovative framework, SRAP-Agent, which integrates Large Language Models (LLMs) into economic simulations.
We conduct extensive policy simulation experiments to verify the feasibility and effectiveness of the SRAP-Agent.
arXiv Detail & Related papers (2024-10-18T03:43:42Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Building Socially-Equitable Public Models [32.35090986784889]
Public models offer predictions to a variety of downstream tasks and have played a crucial role in various AI applications.
We advocate for integrating the objectives of downstream agents into the optimization process.
We propose a novel Equitable Objective to address performance disparities and foster fairness among heterogeneous agents in training.
arXiv Detail & Related papers (2024-06-04T21:27:43Z) - Efficient Multi-agent Reinforcement Learning by Planning [33.51282615335009]
Multi-agent reinforcement learning (MARL) algorithms have accomplished remarkable breakthroughs in solving large-scale decision-making tasks.
Most existing MARL algorithms are model-free, limiting sample efficiency and hindering their applicability in more challenging scenarios.
We propose the MAZero algorithm, which combines a centralized model with Monte Carlo Tree Search (MCTS) for policy search.
arXiv Detail & Related papers (2024-05-20T04:36:02Z) - Causal Coordinated Concurrent Reinforcement Learning [8.654978787096807]
We propose a novel algorithmic framework for data sharing and coordinated exploration for the purpose of learning more data-efficient and better performing policies under a concurrent reinforcement learning setting.
Our algorithm leverages a causal inference algorithm in the form of Additive Noise Model - Mixture Model (ANM-MM) in extracting model parameters governing individual differentials via independence enforcement.
We propose a new data sharing scheme based on a similarity measure of the extracted model parameters and demonstrate superior learning speeds on a set of autoregressive, pendulum and cart-pole swing-up tasks.
arXiv Detail & Related papers (2024-01-31T17:20:28Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
We propose a framework named AutoMBPO to automatically schedule the real data ratio.
In this paper, we first theoretically analyze the role of real data in policy training, which suggests that gradually increasing the ratio of real data yields better performance.
arXiv Detail & Related papers (2021-11-16T15:24:59Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - MM-KTD: Multiple Model Kalman Temporal Differences for Reinforcement
Learning [36.14516028564416]
This paper proposes an innovative Multiple Model Kalman Temporal Difference (MM-KTD) framework to learn optimal control policies.
An active learning method is proposed to enhance the sampling efficiency of the system.
Experimental results show superiority of the MM-KTD framework in comparison to its state-of-the-art counterparts.
arXiv Detail & Related papers (2020-05-30T06:39:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.