論文の概要: Augmenting Knowledge Graph Hierarchies Using Neural Transformers
- arxiv url: http://arxiv.org/abs/2404.08020v1
- Date: Thu, 11 Apr 2024 05:53:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 16:44:18.113091
- Title: Augmenting Knowledge Graph Hierarchies Using Neural Transformers
- Title(参考訳): ニューラルネットワークを用いた知識グラフ階層の強化
- Authors: Sanat Sharma, Mayank Poddar, Jayant Kumar, Kosta Blank, Tracy King,
- Abstract要約: 我々は、知識グラフにおける階層の生成と拡張に、大きな言語モデルを活用します。
小さい(100,000ノード)ドメイン固有のKGでは、数ショットプロンプトとワンショット生成の組み合わせがうまく機能する。
階層化のためのテクニックを提示し、インテントでは98%、知識グラフでは99%のカバレッジ向上を実現した。
- 参考スコア(独自算出の注目度): 0.7689542442882423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge graphs are useful tools to organize, recommend and sort data. Hierarchies in knowledge graphs provide significant benefit in improving understanding and compartmentalization of the data within a knowledge graph. This work leverages large language models to generate and augment hierarchies in an existing knowledge graph. For small (<100,000 node) domain-specific KGs, we find that a combination of few-shot prompting with one-shot generation works well, while larger KG may require cyclical generation. We present techniques for augmenting hierarchies, which led to coverage increase by 98% for intents and 99% for colors in our knowledge graph.
- Abstract(参考訳): 知識グラフはデータを整理、推薦、ソートするのに有用なツールである。
知識グラフの階層化は、知識グラフ内のデータの理解と区画化を改善する上で大きな利益をもたらす。
この作業は、既存の知識グラフで階層を生成し、拡張するために、大きな言語モデルを活用する。
小さい (100,000 ノード) の領域固有の KG に対して、数発のプロンプトとワンショット生成の組み合わせはうまく機能し、より大きな KG は循環生成を必要とする可能性がある。
階層化のためのテクニックを提示し、インテントでは98%、知識グラフでは99%のカバレッジ向上を実現した。
関連論文リスト
- Universal Knowledge Graph Embeddings [4.322134229203427]
本稿では,大規模知識源からユニバーサル知識グラフの埋め込みを学習することを提案する。
私たちはDBpediaとWikidataをベースとした普遍的な埋め込みを、約1億5000万のエンティティ、1500万のリレーション、120億のトリプルで計算することで、私たちのアイデアをインスタンス化します。
論文 参考訳(メタデータ) (2023-10-23T13:07:46Z) - A Study on Knowledge Graph Embeddings and Graph Neural Networks for Web
Of Things [0.0]
将来的には、Web Of Things(WoT)の領域における知識グラフは、物理世界のデジタル表現を提供することである。
本稿では,グラフエンティティの数値表現を学習するために,最先端知識グラフ埋め込み(KGE)法について検討する。
また、KGEとともにグラフニューラルネットワーク(GNN)を調査し、同じ下流タスクでの性能を比較する。
論文 参考訳(メタデータ) (2023-10-23T12:36:33Z) - KGrEaT: A Framework to Evaluate Knowledge Graphs via Downstream Tasks [1.8722948221596285]
KGrEaTは、分類、クラスタリング、レコメンデーションといった実際の下流タスクを通じて知識グラフの品質を推定するフレームワークである。
フレームワークは知識グラフを入力として、評価対象のデータセットに自動的にマップし、定義されたタスクのパフォーマンスメトリクスを計算する。
論文 参考訳(メタデータ) (2023-08-21T07:43:10Z) - Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit
Diversity Modeling [60.0185734837814]
グラフニューラルネットワーク(GNN)は、グラフデータからの学習に広く応用されている。
GNNの一般化能力を強化するため、グラフ強化のような技術を用いて、トレーニンググラフ構造を増強することが慣例となっている。
本研究では,GNNにMixture-of-Experts(MoE)の概念を導入する。
論文 参考訳(メタデータ) (2023-04-06T01:09:36Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Semantic Enhanced Knowledge Graph for Large-Scale Zero-Shot Learning [74.6485604326913]
我々は、専門知識とカテゴリ意味相関の両方を含む新しい意味強化知識グラフを提供する。
知識グラフの情報伝達のために,Residual Graph Convolutional Network (ResGCN)を提案する。
大規模画像Net-21KデータセットとAWA2データセットを用いた実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-12-26T13:18:36Z) - Conditional Attention Networks for Distilling Knowledge Graphs in
Recommendation [74.14009444678031]
本稿では,知識グラフをレコメンデーションシステムに組み込むために,知識対応コンディショナルアテンションネットワーク(KCAN)を提案する。
本研究では,まず,ユーザ・イテムネットワークとナレッジグラフのグローバルな意味的類似性を捉えるノード表現を得る。
そして,そのサブグラフに条件付きアテンションアグリゲーションを適用することで,その知識グラフを改良し,目標固有ノード表現を得る。
論文 参考訳(メタデータ) (2021-11-03T09:40:43Z) - Hierarchical Graph Capsule Network [78.4325268572233]
ノード埋め込みを共同で学習し,グラフ階層を抽出できる階層型グラフカプセルネットワーク(HGCN)を提案する。
階層的表現を学ぶために、HGCNは下層カプセル(部分)と高層カプセル(全体)の間の部分的関係を特徴付ける。
論文 参考訳(メタデータ) (2020-12-16T04:13:26Z) - Zero-Shot Learning with Common Sense Knowledge Graphs [10.721717005752405]
本稿では,共通感覚知識グラフからベクトル空間にノードを埋め込み,クラス表現を学習することを提案する。
クラス表現を生成するための新しいトランスフォーマーグラフ畳み込みネットワーク(TrGCN)を備えた汎用フレームワークであるZSL-KGを紹介する。
以上の結果から,ZSL-KGは既存のWordNetベースの手法を6つのゼロショットベンチマークデータセットのうち5つで改善していることがわかった。
論文 参考訳(メタデータ) (2020-06-18T17:46:17Z) - Unsupervised Hierarchical Graph Representation Learning by Mutual
Information Maximization [8.14036521415919]
教師なしグラフ表現学習法,Unsupervised Hierarchical Graph Representation (UHGR)を提案する。
本手法は,「ローカル」表現と「グローバル」表現の相互情報の最大化に焦点をあてる。
その結果,提案手法は,いくつかのベンチマークにおいて,最先端の教師付き手法に匹敵する結果が得られることがわかった。
論文 参考訳(メタデータ) (2020-03-18T18:21:48Z) - Bridging Knowledge Graphs to Generate Scene Graphs [49.69377653925448]
本稿では,2つのグラフ間の情報伝達を反復的に行う新しいグラフベースニューラルネットワークを提案する。
我々のグラフブリッジネットワークであるGB-Netは、エッジとノードを連続的に推論し、相互接続されたシーンとコモンセンスグラフのリッチでヘテロジニアスな構造を同時に活用し、洗練する。
論文 参考訳(メタデータ) (2020-01-07T23:35:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。