論文の概要: Zero-Shot Learning with Common Sense Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2006.10713v4
- Date: Thu, 25 Aug 2022 19:27:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 09:42:29.338073
- Title: Zero-Shot Learning with Common Sense Knowledge Graphs
- Title(参考訳): 常識知識グラフを用いたゼロショット学習
- Authors: Nihal V. Nayak, Stephen H. Bach
- Abstract要約: 本稿では,共通感覚知識グラフからベクトル空間にノードを埋め込み,クラス表現を学習することを提案する。
クラス表現を生成するための新しいトランスフォーマーグラフ畳み込みネットワーク(TrGCN)を備えた汎用フレームワークであるZSL-KGを紹介する。
以上の結果から,ZSL-KGは既存のWordNetベースの手法を6つのゼロショットベンチマークデータセットのうち5つで改善していることがわかった。
- 参考スコア(独自算出の注目度): 10.721717005752405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot learning relies on semantic class representations such as
hand-engineered attributes or learned embeddings to predict classes without any
labeled examples. We propose to learn class representations by embedding nodes
from common sense knowledge graphs in a vector space. Common sense knowledge
graphs are an untapped source of explicit high-level knowledge that requires
little human effort to apply to a range of tasks. To capture the knowledge in
the graph, we introduce ZSL-KG, a general-purpose framework with a novel
transformer graph convolutional network (TrGCN) for generating class
representations. Our proposed TrGCN architecture computes non-linear
combinations of node neighbourhoods. Our results show that ZSL-KG improves over
existing WordNet-based methods on five out of six zero-shot benchmark datasets
in language and vision.
- Abstract(参考訳): ゼロショット学習は、ラベル付き例なしでクラスを予測するために手書きの属性や学習された埋め込みのようなセマンティッククラス表現に依存している。
本稿では,共通感覚知識グラフからベクトル空間にノードを埋め込み,クラス表現を学習する。
常識知識グラフ(英: Common sense knowledge graph)は、さまざまなタスクに適用するために、人間の努力をほとんど必要としない、明示的な高度な知識の源泉である。
グラフの知識を捉えるため、クラス表現を生成するための新しいトランスフォーマーグラフ畳み込みネットワーク(TrGCN)を備えた汎用フレームワークZSL-KGを導入する。
提案するTrGCNアーキテクチャは,ノード近傍の非線形結合を計算する。
以上の結果から,ZSL-KGは既存のWordNetベースの手法を6つのゼロショットベンチマークデータセットのうち5つで改善した。
関連論文リスト
- KMF: Knowledge-Aware Multi-Faceted Representation Learning for Zero-Shot
Node Classification [75.95647590619929]
Zero-Shot Node Classification (ZNC)は、グラフデータ分析において、新しく重要なタスクである。
ラベルセマンティクスの豊かさを向上する知識認識型多面的フレームワーク(KMF)を提案する。
ノード情報集約によるプロトタイプドリフトの問題を軽減するために,新しい幾何学的制約を開発した。
論文 参考訳(メタデータ) (2023-08-15T02:38:08Z) - Local Structure-aware Graph Contrastive Representation Learning [12.554113138406688]
複数のビューからノードの構造情報をモデル化するための局所構造対応グラフ比較表現学習法(LS-GCL)を提案する。
ローカルビューでは、各ターゲットノードのセマンティックサブグラフが共有GNNエンコーダに入力され、サブグラフレベルに埋め込まれたターゲットノードを取得する。
グローバルな視点では、元のグラフはノードの必要不可欠な意味情報を保存しているので、共有GNNエンコーダを利用して、グローバルなグラフレベルでターゲットノードの埋め込みを学習する。
論文 参考訳(メタデータ) (2023-08-07T03:23:46Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
テキスト分散グラフ(TAG)におけるテキストとノードの分離表現を共同学習するためのContrastive Graph-Text Pretraining(ConGraT)を提案する。
提案手法は言語モデル(LM)とグラフニューラルネットワーク(GNN)を訓練し,CLIPにインスパイアされたバッチワイドコントラスト学習目標を用いて,それらの表現を共通の潜在空間に整列させる。
実験により、ConGraTは、ノードとテキストのカテゴリ分類、リンク予測、言語モデリングなど、さまざまな下流タスクのベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-23T17:53:30Z) - Multi-Level Graph Contrastive Learning [38.022118893733804]
本稿では,グラフの空間ビューを対比することで,グラフデータの堅牢な表現を学習するためのマルチレベルグラフコントラスト学習(MLGCL)フレームワークを提案する。
元のグラフは1次近似構造であり、不確実性や誤りを含むが、符号化機能によって生成された$k$NNグラフは高次近接性を保持する。
MLGCLは、7つのデータセット上の既存の最先端グラフ表現学習法と比較して有望な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-07-06T14:24:43Z) - Graph Representation Learning by Ensemble Aggregating Subgraphs via
Mutual Information Maximization [5.419711903307341]
グラフニューラルネットワークが学習するグラフレベルの表現を高めるための自己監視型学習法を提案する。
グラフ構造を網羅的に理解するために,サブグラフ法のようなアンサンブル学習を提案する。
また, 効率的かつ効果的な対位学習を実現するために, ヘッドテールコントラストサンプル構築法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:12Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Generative Adversarial Zero-shot Learning via Knowledge Graphs [32.42721467499858]
本稿では,知識グラフ(KG)にリッチセマンティクスを組み込むことにより,KG-GANという新たな生成ZSL手法を提案する。
具体的には、グラフニューラルネットワークに基づいて、クラスビューと属性ビューの2つのビューからKGをエンコードする。
各ノードに対してよく学習されたセマンティックな埋め込み(視覚圏を表す)を用いて、GANを活用して、目に見えないクラスの魅力的な視覚的特徴を合成する。
論文 参考訳(メタデータ) (2020-04-07T03:55:26Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。