論文の概要: Continual Learning of Range-Dependent Transmission Loss for Underwater Acoustic using Conditional Convolutional Neural Net
- arxiv url: http://arxiv.org/abs/2404.08091v1
- Date: Thu, 11 Apr 2024 19:13:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 16:34:33.645627
- Title: Continual Learning of Range-Dependent Transmission Loss for Underwater Acoustic using Conditional Convolutional Neural Net
- Title(参考訳): 条件付き畳み込みニューラルネットを用いた水中音響の帯域依存透過損失の連続学習
- Authors: Indu Kant Deo, Akash Venkateshwaran, Rajeev K. Jaiman,
- Abstract要約: 本研究では,遠方界シナリオにおける水中放射音予測のための深層学習モデルの精度向上を目的としている。
そこで本稿では,海洋浴量測定データを入力に組み込んだ新しいレンジ条件畳み込みニューラルネットワークを提案する。
提案アーキテクチャは, 帯域依存性の異なる様々な浴量測定プロファイル上での透過損失を効果的に捕捉する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There is a significant need for precise and reliable forecasting of the far-field noise emanating from shipping vessels. Conventional full-order models based on the Navier-Stokes equations are unsuitable, and sophisticated model reduction methods may be ineffective for accurately predicting far-field noise in environments with seamounts and significant variations in bathymetry. Recent advances in reduced-order models, particularly those based on convolutional and recurrent neural networks, offer a faster and more accurate alternative. These models use convolutional neural networks to reduce data dimensions effectively. However, current deep-learning models face challenges in predicting wave propagation over long periods and for remote locations, often relying on auto-regressive prediction and lacking far-field bathymetry information. This research aims to improve the accuracy of deep-learning models for predicting underwater radiated noise in far-field scenarios. We propose a novel range-conditional convolutional neural network that incorporates ocean bathymetry data into the input. By integrating this architecture into a continual learning framework, we aim to generalize the model for varying bathymetry worldwide. To demonstrate the effectiveness of our approach, we analyze our model on several test cases and a benchmark scenario involving far-field prediction over Dickin's seamount in the Northeast Pacific. Our proposed architecture effectively captures transmission loss over a range-dependent, varying bathymetry profile. This architecture can be integrated into an adaptive management system for underwater radiated noise, providing real-time end-to-end mapping between near-field ship noise sources and received noise at the marine mammal's location.
- Abstract(参考訳): 船舶から発せられる遠方界騒音の正確かつ確実な予測には重要なニーズがある。
従来のNavier-Stokes方程式に基づくフルオーダーモデルは不適当であり、洗練されたモデル還元法は、海山のある環境における遠距離場雑音を正確に予測するのに有効ではない。
近年のリダクションモデル、特に畳み込みニューラルネットワークとリカレントニューラルネットワークに基づくモデルは、より高速で正確な代替手段を提供する。
これらのモデルは畳み込みニューラルネットワークを使用して、データ次元を効果的に削減する。
しかし、現在のディープラーニングモデルは、長期間にわたる波動伝搬予測や遠隔地での波動伝搬予測において、しばしば自己回帰予測に依存し、遠距離場浴量測定情報を欠いている問題に直面している。
本研究では,遠方界シナリオにおける水中放射音予測のための深層学習モデルの精度向上を目的としている。
そこで本稿では,海洋浴量測定データを入力に組み込んだ新しいレンジ条件畳み込みニューラルネットワークを提案する。
このアーキテクチャを連続的な学習フレームワークに統合することにより、世界中の様々な浴量測定のモデルを一般化することを目指している。
提案手法の有効性を実証するため,東北太平洋のディッキン海山に対する遠距離場予測を含むいくつかの試験事例とベンチマークシナリオを用いてモデル解析を行った。
提案アーキテクチャは, 帯域依存性の異なる様々な浴量測定プロファイル上での透過損失を効果的に捕捉する。
このアーキテクチャは、水中で放射される騒音を適応的に管理するシステムに統合することができ、近距離の船舶騒音源と海洋哺乳動物の位置で受信された騒音との間のエンドツーエンドのマッピングをリアルタイムに提供することができる。
関連論文リスト
- A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
本研究では,交差点での移動予測を回転させる多グラフ畳み込みニューラルネットワーク(MGCNN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案アーキテクチャは,トラフィックデータの時間変動をモデル化する多グラフ構造と,グラフ上のトラフィックデータの空間変動をモデル化するためのスペクトル畳み込み演算を組み合わせた。
モデルが1, 2, 3, 4, 5分後に短期予測を行う能力は,4つのベースライン・オブ・ザ・アーティファクトモデルに対して評価された。
論文 参考訳(メタデータ) (2024-06-02T05:41:25Z) - Enhancing Traffic Prediction with Learnable Filter Module [42.44466196331814]
交通データのノイズは、その性質上モデル化が困難であり、過度に適合するリスクを引き起こす可能性がある。
本稿では,トラフィックデータのノイズを適応的にフィルタする学習可能なフィルタモジュールを提案する。
提案するモジュールは軽量で,既存のモデルとの統合が容易であり,トラフィック予測性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-10-24T09:16:13Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
ニューラルネットワークを用いた位相分解波面再構成のための新しい手法を提案する。
提案手法は,一次元格子を用いた合成的かつ高精度な訓練データを利用する。
論文 参考訳(メタデータ) (2023-05-18T12:30:26Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Artificial Intelligence Hybrid Deep Learning Model for Groundwater Level
Prediction Using MLP-ADAM [0.0]
本稿では,多層パーセプトロンを用いて地下水位をシミュレーションする。
この問題には適応モーメント推定アルゴリズムも用いられる。
その結果,ディープラーニングアルゴリズムは高精度な予測が可能であることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T10:11:45Z) - Churn Reduction via Distillation [54.5952282395487]
本研究は, 基礎モデルを教師として用いた蒸留によるトレーニングと, 予測的チャーンに対する明示的な制約によるトレーニングとの等価性を示す。
次に, 蒸留が近年の多くのベースラインに対する低チャーン訓練に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-04T18:03:31Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - Inferring, Predicting, and Denoising Causal Wave Dynamics [3.9407250051441403]
DISTANA(Distributed Artificial Neural Network Architecture)は、グラフ畳み込みニューラルネットワークである。
DISTANAは、再帰パターンが観測されるので、データストリームを飾るのに非常に適していることを示す。
安定かつ正確なクローズドループ予測を数百の時間ステップで生成する。
論文 参考訳(メタデータ) (2020-09-19T08:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。