論文の概要: Measuring Domain Shifts using Deep Learning Remote Photoplethysmography Model Similarity
- arxiv url: http://arxiv.org/abs/2404.08184v1
- Date: Fri, 12 Apr 2024 01:13:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 16:15:01.656989
- Title: Measuring Domain Shifts using Deep Learning Remote Photoplethysmography Model Similarity
- Title(参考訳): 深層学習型リモート光胸波モデル類似性を用いた領域シフトの測定
- Authors: Nathan Vance, Patrick Flynn,
- Abstract要約: 遠隔写真撮影における領域シフト問題について検討する(ハーモグラフィ)。
ドメインシフトの尺度として使用できるメトリクスに基づいたメトリクスを提案する。
DS-diffは、対象領域の基底的真理へのアクセスを前提としていない。
- 参考スコア(独自算出の注目度): 0.9208007322096533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain shift differences between training data for deep learning models and the deployment context can result in severe performance issues for models which fail to generalize. We study the domain shift problem under the context of remote photoplethysmography (rPPG), a technique for video-based heart rate inference. We propose metrics based on model similarity which may be used as a measure of domain shift, and we demonstrate high correlation between these metrics and empirical performance. One of the proposed metrics with viable correlations, DS-diff, does not assume access to the ground truth of the target domain, i.e. it may be applied to in-the-wild data. To that end, we investigate a model selection problem in which ground truth results for the evaluation domain is not known, demonstrating a 13.9% performance improvement over the average case baseline.
- Abstract(参考訳): ディープラーニングモデルのトレーニングデータとデプロイメントコンテキストのドメインシフトの違いは、一般化に失敗するモデルのパフォーマンス上の深刻な問題を引き起こす可能性がある。
本稿では,遠隔光胸腺撮影(rPPG)のコンテキスト下での領域シフト問題について検討する。
ドメインシフトの尺度として使用できるモデル類似度に基づくメトリクスを提案し,これらの指標と経験的性能との間に高い相関関係を示す。
DS-diffと呼ばれる実効性のある相関を持つ指標の一つは、対象領域の基底的真理へのアクセスを前提としていない。
そこで,評価領域の真理結果が不明なモデル選択問題について検討し,平均ケースベースラインに対して13.9%の性能向上を示した。
関連論文リスト
- SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - Improving Domain Generalization with Domain Relations [77.63345406973097]
本稿では、モデルがトレーニングされたドメインと異なる新しいドメインに適用されたときに発生するドメインシフトに焦点を当てる。
ドメイン固有モデルを学習するためのD$3$Gという新しい手法を提案する。
以上の結果から,D$3$Gは最先端の手法より一貫して優れていた。
論文 参考訳(メタデータ) (2023-02-06T08:11:16Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
ディープニューラルネットワークは一般的に、ラベル付きトレーニングデータが多く必要であり、トレーニングデータとテストデータの間のドメインシフトに弱い。
本稿では,ラベル付きソースからラベル付きターゲットドメインへのモデルの適用により,画像登録のための幾何学的領域適応手法を提案する。
本手法は,ベースラインモデルの精度を目標データに適合させながら,ベースラインモデルの50%/47%を継続的に改善する。
論文 参考訳(メタデータ) (2022-07-01T12:16:42Z) - UDALM: Unsupervised Domain Adaptation through Language Modeling [79.73916345178415]
複合分類とマスキング言語モデル損失を用いた微調整手順であるUDALMについて紹介します。
本実験では, 混合損失スケールと利用可能な目標データの量で訓練されたモデルの性能を, 停止基準として有効に用いることを示した。
この方法は、amazon reviewsセンチメントデータセットの12のドメインペアで評価され、9.1.74%の精度が得られ、最先端よりも1.11%の絶対的な改善が得られます。
論文 参考訳(メタデータ) (2021-04-14T19:05:01Z) - Style-transfer GANs for bridging the domain gap in synthetic pose
estimator training [8.508403388002133]
画素レベルの画像変換に汎用的なGANモデルを採用することを提案する。
得られたモデルは、トレーニング中または推論時に、ドメインギャップをブリッジするために使用される。
ドメインランダム化の程度で訓練されたモデルと比較すると,モデルの性能は大幅に向上した。
論文 参考訳(メタデータ) (2020-04-28T17:35:03Z) - Multi-Source Domain Adaptation for Text Classification via
DistanceNet-Bandits [101.68525259222164]
本研究では,NLPタスクのコンテキストにおいて,サンプル推定に基づく領域間の相違を特徴付ける様々な距離ベース尺度について検討する。
タスクの損失関数と協調して最小化するために,これらの距離測度を付加的な損失関数として用いるディスタンスネットモデルを開発した。
マルチアーム・バンド・コントローラを用いて複数のソース・ドメインを動的に切り替えるDistanceNet-Banditモデルに拡張する。
論文 参考訳(メタデータ) (2020-01-13T15:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。