論文の概要: Reducing hallucination in structured outputs via Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2404.08189v1
- Date: Fri, 12 Apr 2024 01:42:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 16:05:17.484309
- Title: Reducing hallucination in structured outputs via Retrieval-Augmented Generation
- Title(参考訳): Retrieval-Augmented Generationによる構造出力の幻覚の低減
- Authors: Patrice Béchard, Orlando Marquez Ayala,
- Abstract要約: 大型言語モデル(LLM)は、幻覚を除去または少なくとも減らすことなく、嵐によって世界を席巻した。
本稿では,構造化された出力の品質を大幅に向上させるために,検索拡張生成(RAG)を利用したシステムを提案する。
さらに,小型で訓練のよいエンコーダを用いることで,付随するLLMのサイズを小さくすることができることを示す。
- 参考スコア(独自算出の注目度): 0.040964539027092926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A common and fundamental limitation of Generative AI (GenAI) is its propensity to hallucinate. While large language models (LLM) have taken the world by storm, without eliminating or at least reducing hallucinations, real-world GenAI systems may face challenges in user adoption. In the process of deploying an enterprise application that produces workflows based on natural language requirements, we devised a system leveraging Retrieval Augmented Generation (RAG) to greatly improve the quality of the structured output that represents such workflows. Thanks to our implementation of RAG, our proposed system significantly reduces hallucinations in the output and improves the generalization of our LLM in out-of-domain settings. In addition, we show that using a small, well-trained retriever encoder can reduce the size of the accompanying LLM, thereby making deployments of LLM-based systems less resource-intensive.
- Abstract(参考訳): ジェネレーティブAI(GenAI)の共通かつ基本的な制限は、幻覚への適合性である。
大規模な言語モデル(LLM)は、少なくとも幻覚を排除または軽減することなく、世界を嵐に巻き込んだが、現実のGenAIシステムは、ユーザの採用において課題に直面している。
自然言語要求に基づいてワークフローを生成するエンタープライズアプリケーションをデプロイする過程で、そのようなワークフローを表す構造化アウトプットの品質を大幅に向上させるために、検索拡張生成(RAG)を利用したシステムを考案した。
RAGの実装により、提案システムは出力の幻覚を著しく低減し、ドメイン外設定でのLCMの一般化を改善する。
さらに,小型で訓練のよいレトリバーエンコーダを使用すれば,付随するLLMのサイズが小さくなり,LLMベースのシステムの展開が資源集約化されにくくなることを示す。
関連論文リスト
- Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output [49.893971654861424]
検索強化生成(RAG)から非実効出力を検出する軽量な手法を提案する。
私たちは、二項決定を下すためにしきい値にできる事実性スコアを計算します。
実験の結果, ROC曲線 (AUC) の下では, 関連するオープンソースデータセットの広範囲にわたって高い面積を示すことができた。
論文 参考訳(メタデータ) (2024-11-01T20:44:59Z) - LOBG:Less Overfitting for Better Generalization in Vision-Language Model [19.890629892640206]
視覚言語モデルのためのLOBGというフレームワークを提案する。
私たちはCLIPを使用して、オーバーフィッティングを引き起こす可能性のあるきめ細かいフォアグラウンド情報をフィルタリングし、基本的な視覚概念でプロンプトを導く。
提案手法は,最先端手法と比較して,一般化能力を大幅に向上し,過度な適合を緩和する。
論文 参考訳(メタデータ) (2024-10-14T08:06:21Z) - Large Language Models can be Strong Self-Detoxifiers [82.6594169242814]
SASA(Self-disciplined Autoregressive Smpling)は、大規模言語モデル(LLM)の毒性低減のための軽量制御復号アルゴリズムである。
SASAは、自己回帰サンプリング戦略を調整することにより、電流出力のマージンを追跡し、有害な部分空間から世代を分離する。
Llama-3.1-Instruct (8B), Llama-2 (7B), GPT2-L model with the RealToxicityPrompts, BOLD, and AttaQ benchmarks。
論文 参考訳(メタデータ) (2024-10-04T17:45:15Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG(投機的RAG)は、より大規模なジェネラリストLMを利用して、より小さな蒸留専門のLMによって並列に生成された複数のRAGドラフトを効率よく検証するフレームワークである。
提案手法は,より小さな専門家のLMにドラフト作成を委譲することでRAGを加速し,より大きなジェネラリストのLMがドラフトに1回の検証パスを実行する。
PubHealthの従来のRAGシステムと比較して、レイテンシを51%削減しながら、最大12.97%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-07-11T06:50:19Z) - SparseLLM: Towards Global Pruning for Pre-trained Language Models [12.057369029549534]
本研究では,グローバルプルーニングプロセスを再定義する新しいフレームワークであるSparseLLMを提案する。
SparseLLMのアプローチは、LLMをモジュラ関数の連鎖として概念化し、問題の分解に補助変数を利用する。
高いスパーシティ・レシエーションにおいて、特に顕著なパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2024-02-28T00:09:07Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Mitigating Object Hallucination in Large Vision-Language Models via
Classifier-Free Guidance [56.04768229686853]
LVLM(Large Vision-Language Models)は、画像中の既存の物体を幻覚させる傾向がある。
私たちはclassifieR-Free guIdaNcE (MARINE)を介してMitigating HallucinAtionと呼ばれるフレームワークを導入する。
MARINEはトレーニングフリーかつAPIフリーであり、生成プロセス中のオブジェクト幻覚を効果的かつ効率的に低減することができる。
論文 参考訳(メタデータ) (2024-02-13T18:59:05Z) - Prompt Perturbation in Retrieval-Augmented Generation based Large Language Models [9.688626139309013]
Retrieval-Augmented Generationは、大規模言語モデルからテキスト生成の信頼性を向上させる手段として考えられている。
本研究では,プロンプトに短い接頭辞を挿入しても,実際の正解から遠く離れたアウトプットを生成することを発見した。
グラディエントガイドプロンプト摂動法(Gradient Guided Prompt Perturbation)と呼ばれる新しい最適化手法を提案する。
論文 参考訳(メタデータ) (2024-02-11T12:25:41Z) - One-Shot Sensitivity-Aware Mixed Sparsity Pruning for Large Language Models [42.95555008229016]
そこで本研究では, ヘッセン感度を意識した混合疎水性プルーニング法を, 再トレーニングを必要とせず, 最低50%の疎水性まで適用する方法を提案する。
提案手法の利点は, 空間が極めて高い場合にさらに顕著である。
論文 参考訳(メタデータ) (2023-10-14T05:43:09Z) - Reinforced Self-Training (ReST) for Language Modeling [56.75447441157628]
人間からのフィードバック(RLHF)からの強化学習は、人間の好みに合わせることで、大きな言語モデル(LLM)の出力の品質を向上させることができる。
強化自己学習(Reinforced Self-Training, ReST)と呼ばれる, バッチ強化学習(RL)の成長にインスパイアされたLLMを人間の好みに合わせるための簡単なアルゴリズムを提案する。
この結果から,ReSTは自動測定値と機械翻訳ベンチマークの人的評価によって,計算とサンプル効率で翻訳品質を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2023-08-17T14:12:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。