論文の概要: Activation Sparsity Opportunities for Compressing General Large Language Models
- arxiv url: http://arxiv.org/abs/2412.12178v2
- Date: Fri, 31 Jan 2025 19:09:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:06:54.689370
- Title: Activation Sparsity Opportunities for Compressing General Large Language Models
- Title(参考訳): 一般大言語モデル圧縮のためのアクティベーション空間オプション
- Authors: Nobel Dhar, Bobin Deng, Md Romyull Islam, Kazi Fahim Ahmad Nasif, Liang Zhao, Kun Suo,
- Abstract要約: この研究は、最先端AIモデルにおけるアクティベーション空間の強制とパープレキシティ(精度)のトレードオフを体系的に調査する。
実験により,重要なFFN成分に対する主記憶の約50%と計算量の削減を無視可能な精度劣化で達成できることが実証された。
- 参考スコア(独自算出の注目度): 4.5624217435826
- License:
- Abstract: Deploying local AI models, such as Large Language Models (LLMs), to edge devices can substantially enhance devices' independent capabilities, alleviate the server's burden, and lower the response time. Owing to these tremendous potentials, many big tech companies have released several lightweight Small Language Models (SLMs) to bridge this gap. However, we still have huge motivations to deploy more powerful (LLMs) AI models on edge devices and enhance their smartness level. Unlike the conventional approaches for AI model compression, we investigate activation sparsity. The activation sparsity method is orthogonal and combinable with existing techniques to maximize the compression rate while maintaining great accuracy. LLMs' Feed-Forward Network (FFN) components, which typically comprise a large proportion of parameters (around 2/3), ensure that our FFN optimizations would have a better chance of achieving effective compression. Moreover, our findings are beneficial to general LLMs and are not restricted to ReLU-based models. This work systematically investigates the tradeoff between enforcing activation sparsity and perplexity (accuracy) on state-of-the-art LLMs. Our empirical analysis demonstrates that we can obtain around 50% of main memory and computing reductions for critical FFN components with negligible accuracy degradation. This extra 50% sparsity does not naturally exist in the current LLMs, which require tuning LLMs' activation outputs by injecting zero-enforcing thresholds. To obtain the benefits of activation sparsity, we provide a guideline for the system architect for LLM prediction and prefetching. The success prediction allows the system to prefetch the necessary weights while omitting the inactive ones and their successors, therefore lowering cache and memory pollution and reducing LLM execution time on resource-constrained edge devices.
- Abstract(参考訳): エッジデバイスにLarge Language Models(LLMs)などのローカルAIモデルをデプロイすることで、デバイスの独立性を大幅に向上し、サーバの負担を軽減すると同時に、応答時間を短縮することができる。
こうした大きなポテンシャルのために、多くの大企業がこのギャップを埋めるために、いくつかの軽量のSLM(Small Language Models)をリリースした。
しかし、エッジデバイスにより強力な(LLM)AIモデルをデプロイし、そのスマート度を向上するという大きな動機があります。
従来のAIモデル圧縮手法とは異なり、アクティベーション空間について検討する。
アクティベーション・スパシティ法は, 精度を高く保ちながら圧縮速度を最大化するために, 従来技術と直交・結合可能である。
LLMのFeed-Forward Network (FFN) コンポーネントは、通常、多くのパラメータ(約2/3)で構成されています。
さらに,本研究の成果は一般LLMにとって有益であり,ReLUモデルに限らない。
本研究は, 最先端LLMにおけるアクティベーション空間とパープレキシティ(精度)のトレードオフを系統的に検討する。
実験により,重要なFFN成分に対する主記憶の約50%と計算量の削減を無視可能な精度劣化で達成できることが実証された。
この余分な50%の間隔は、ゼロエンフォースしきい値を注入することでLLMの活性化出力を調整する必要がある現在のLLMには自然に存在しない。
活性化空間の利点を得るため,LLM予測とプレフェッチのためのシステムアーキテクトのガイドラインを提供する。
成功予測により、システムは不活性なものとその後継を省略しながら必要な重みを予知し、キャッシュとメモリ汚染を低減し、リソース制約されたエッジデバイス上でのLCM実行時間を短縮できる。
関連論文リスト
- eFedLLM: Efficient LLM Inference Based on Federated Learning [1.6179784294541053]
大言語モデル(LLMs)は人工知能(AI)の転換期を告げる
本稿では, LLM推論の運用効率と費用対効果を高める効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-11-24T22:50:02Z) - Sparsing Law: Towards Large Language Models with Greater Activation Sparsity [62.09617609556697]
活性化空間性は、除去できる活性化出力の中に、かなり弱い分散要素が存在することを表す。
PPL-$p%$ sparsity, a accurate and performance-aware activation sparsity metric。
我々は、SiLUよりも活性化関数としてReLUが効率的であることを示し、より多くのトレーニングデータを利用してアクティベーション空間を改善することができることを示した。
論文 参考訳(メタデータ) (2024-11-04T17:59:04Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - Q-Sparse: All Large Language Models can be Fully Sparsely-Activated [93.45300714803429]
Q-Sparseは、スパースアクティベートされた大規模言語モデル(LLM)を訓練するための、シンプルで効果的なアプローチである。
Q-Sparse は LLM における活性化の完全な分散を可能にし、推論においてかなりの効率向上をもたらす。
バッチトレーニングと推論のためのBlock Q-Sparseも導入しています。
論文 参考訳(メタデータ) (2024-07-15T17:59:29Z) - ShadowLLM: Predictor-based Contextual Sparsity for Large Language Models [67.97667465509504]
我々は,LLMの挙動を隠蔽し,より親密なパターンを強制できる新しい予測器であるShadowLLMを開発した。
ShadowLLMは最先端のDejaVuフレームワーク上で最大20%のスピードアップを達成する。
論文 参考訳(メタデータ) (2024-06-24T13:41:08Z) - Learn To be Efficient: Build Structured Sparsity in Large Language Models [17.940183066850565]
大きな言語モデル(LLM)は、その10億レベルのパラメータで驚くべき成功を収めていますが、高い推論オーバーヘッドを引き起こします。
既存の方法は、訓練後の環境で自然に形成された活性化空間の利用にのみ焦点をあてる。
本稿では,Learning-To-Efficient (LTE) という学習学習アルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-02-09T01:18:16Z) - ReLU$^2$ Wins: Discovering Efficient Activation Functions for Sparse
LLMs [91.31204876440765]
本稿では、ニューロンの出力の等級と調整された等級しきい値によってニューロンの活性化を定義する一般的な方法を提案する。
スパース計算における最も効率的なアクティベーション関数を見つけるために,本手法を提案する。
我々は、ReLU、SwiGLU、ReGLU、ReLU$2$といった異なるアクティベーション機能を利用したLCMの徹底的な実験を行う。
論文 参考訳(メタデータ) (2024-02-06T08:45:51Z) - One-Shot Sensitivity-Aware Mixed Sparsity Pruning for Large Language Models [42.95555008229016]
そこで本研究では, ヘッセン感度を意識した混合疎水性プルーニング法を, 再トレーニングを必要とせず, 最低50%の疎水性まで適用する方法を提案する。
提案手法の利点は, 空間が極めて高い場合にさらに顕著である。
論文 参考訳(メタデータ) (2023-10-14T05:43:09Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
そこで我々は,DSnoT(Dynamic Sparse No Training, 動的スパース・ノー・トレーニング)を導入した。
動的スパーストレーニングにインスパイアされたDSnoTは、密度とスパースLLM間の再構成誤差を最小限に抑える。
本稿は, LLMのスパースを, 効率的なトレーニング自由な方法で微調整し, 新たな会場をオープンして, LLMの空間性に大きな可能性を拡大する方法について, 新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-13T07:38:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。