論文の概要: Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality
- arxiv url: http://arxiv.org/abs/2404.08230v1
- Date: Fri, 12 Apr 2024 04:17:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 15:55:31.085787
- Title: Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality
- Title(参考訳): 機械学習モデルにおけるフェアネスとパフォーマンスの向上:モンテカルロ・ドロップアウトとパレート最適性を用いたマルチタスク学習アプローチ
- Authors: Khadija Zanna, Akane Sano,
- Abstract要約: マルチタスク学習に基づくバイアス軽減手法を提案する。
モデルフェアネスとパフォーマンスの最も望ましいトレードオフを実現する方法を示します。
- 参考スコア(独自算出の注目度): 1.5498930424110338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the need for generalizable bias mitigation techniques in machine learning due to the growing concerns of fairness and discrimination in data-driven decision-making procedures across a range of industries. While many existing methods for mitigating bias in machine learning have succeeded in specific cases, they often lack generalizability and cannot be easily applied to different data types or models. Additionally, the trade-off between accuracy and fairness remains a fundamental tension in the field. To address these issues, we propose a bias mitigation method based on multi-task learning, utilizing the concept of Monte-Carlo dropout and Pareto optimality from multi-objective optimization. This method optimizes accuracy and fairness while improving the model's explainability without using sensitive information. We test this method on three datasets from different domains and show how it can deliver the most desired trade-off between model fairness and performance. This allows for tuning in specific domains where one metric may be more important than another. With the framework we introduce in this paper, we aim to enhance the fairness-performance trade-off and offer a solution to bias mitigation methods' generalizability issues in machine learning.
- Abstract(参考訳): 本稿では,機械学習における一般化可能なバイアス緩和手法の必要性について考察する。
機械学習におけるバイアスを軽減する既存の方法の多くは特定のケースで成功したが、一般化性に欠け、異なるデータタイプやモデルに容易に適用できないことが多い。
さらに、正確性と公平性の間のトレードオフは、この分野における根本的な緊張関係を保っている。
これらの問題に対処するために,モンテカルロ・ドロップアウトの概念と多目的最適化によるパレート最適性を利用して,マルチタスク学習に基づくバイアス軽減手法を提案する。
本手法は、機密情報を用いることなく、モデルの説明性を向上しつつ、精度と公平性を最適化する。
我々は、異なるドメインの3つのデータセットでこの手法を検証し、モデルフェアネスとパフォーマンスの最も望ましいトレードオフを提供する方法を示す。
これにより、あるメトリックが他のメトリックよりも重要かもしれない特定のドメインのチューニングが可能になる。
本稿では,機械学習におけるバイアス緩和手法の一般化可能性問題に対する解決策を提供するとともに,公平性とパフォーマンスのトレードオフを高めることを目的とする。
関連論文リスト
- Fair In-Context Learning via Latent Concept Variables [17.216196320585922]
大規模言語モデル(LLM)は、学習前のデータから社会的偏見と差別を継承することができる。
我々は、予測結果と敏感な変数との相関を低減し、潜在概念学習における公平性の促進を支援するデータ強化戦略を設計する。
論文 参考訳(メタデータ) (2024-11-04T23:10:05Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models [21.929902181609936]
我々は不確実性に基づくアクティブラーニングとLoRAを統合する新しい手法を提案する。
不確実性ギャップについて、ベースモデルの不確実性とフルモデルの不確実性を組み合わせた動的不確実性測定を導入する。
モデルのキャリブレーションが不十分な場合、LoRAトレーニング中に正規化手法を導入し、モデルが過度に信頼されないようにする。
論文 参考訳(メタデータ) (2024-03-02T10:38:10Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z) - Discriminator Augmented Model-Based Reinforcement Learning [47.094522301093775]
学習したモデルが不正確であり、計画が損なわれ、パフォーマンスが悪くなるのは実際には一般的です。
本稿では,真の力学と学習力学の相違を考慮に入れた重要サンプリングフレームワークによる計画の改善を目的とする。
論文 参考訳(メタデータ) (2021-03-24T06:01:55Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Fair Meta-Learning For Few-Shot Classification [7.672769260569742]
バイアスデータに基づいてトレーニングされた機械学習アルゴリズムは、不公平な予測を行う傾向がある。
本稿では,メタトレイン中のバイアスを効果的に軽減する,高速適応型数ショットメタラーニング手法を提案する。
提案手法は,モデル出力のバイアスを効果的に軽減し,不明瞭なタスクに対して精度と公平性の両方を一般化することを実証的に実証する。
論文 参考訳(メタデータ) (2020-09-23T22:33:47Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z) - FairALM: Augmented Lagrangian Method for Training Fair Models with
Little Regret [42.66567001275493]
現在、我々がモデルに提示するデータセットのバイアスのため、公正な公開トレーニングが不公平なモデルにつながることは受け入れられている。
そこで本研究では,モデルのトレーニング中に公平性を同時に課すメカニズムについて検討する。
論文 参考訳(メタデータ) (2020-04-03T03:18:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。