Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality
- URL: http://arxiv.org/abs/2404.08230v1
- Date: Fri, 12 Apr 2024 04:17:50 GMT
- Title: Enhancing Fairness and Performance in Machine Learning Models: A Multi-Task Learning Approach with Monte-Carlo Dropout and Pareto Optimality
- Authors: Khadija Zanna, Akane Sano,
- Abstract summary: We propose a bias mitigation method based on multi-task learning.
We show how it can deliver the most desired trade-off between model fairness and performance.
- Score: 1.5498930424110338
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the need for generalizable bias mitigation techniques in machine learning due to the growing concerns of fairness and discrimination in data-driven decision-making procedures across a range of industries. While many existing methods for mitigating bias in machine learning have succeeded in specific cases, they often lack generalizability and cannot be easily applied to different data types or models. Additionally, the trade-off between accuracy and fairness remains a fundamental tension in the field. To address these issues, we propose a bias mitigation method based on multi-task learning, utilizing the concept of Monte-Carlo dropout and Pareto optimality from multi-objective optimization. This method optimizes accuracy and fairness while improving the model's explainability without using sensitive information. We test this method on three datasets from different domains and show how it can deliver the most desired trade-off between model fairness and performance. This allows for tuning in specific domains where one metric may be more important than another. With the framework we introduce in this paper, we aim to enhance the fairness-performance trade-off and offer a solution to bias mitigation methods' generalizability issues in machine learning.
Related papers
- Fair In-Context Learning via Latent Concept Variables [17.216196320585922]
Large language models (LLMs) can inherit social bias and discrimination from their pre-training data.
We design data augmentation strategies that reduce correlation between predictive outcomes and sensitive variables helping to promote fairness during latent concept learning.
arXiv Detail & Related papers (2024-11-04T23:10:05Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models [21.929902181609936]
We propose a novel approach to integrate uncertainty-based active learning and LoRA.
For the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model.
For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident.
arXiv Detail & Related papers (2024-03-02T10:38:10Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Discriminator Augmented Model-Based Reinforcement Learning [47.094522301093775]
It is common in practice for the learned model to be inaccurate, impairing planning and leading to poor performance.
This paper aims to improve planning with an importance sampling framework that accounts for discrepancy between the true and learned dynamics.
arXiv Detail & Related papers (2021-03-24T06:01:55Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Fair Meta-Learning For Few-Shot Classification [7.672769260569742]
A machine learning algorithm trained on biased data tends to make unfair predictions.
We propose a novel fair fast-adapted few-shot meta-learning approach that efficiently mitigates biases during meta-train.
We empirically demonstrate that our proposed approach efficiently mitigates biases on model output and generalizes both accuracy and fairness to unseen tasks.
arXiv Detail & Related papers (2020-09-23T22:33:47Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - FairALM: Augmented Lagrangian Method for Training Fair Models with
Little Regret [42.66567001275493]
It is now accepted that because of biases in the datasets we present to the models, a fairness-oblivious training will lead to unfair models.
Here, we study mechanisms that impose fairness concurrently while training the model.
arXiv Detail & Related papers (2020-04-03T03:18:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.