Uncertainty Aware Tropical Cyclone Wind Speed Estimation from Satellite Data
- URL: http://arxiv.org/abs/2404.08325v1
- Date: Fri, 12 Apr 2024 08:35:38 GMT
- Title: Uncertainty Aware Tropical Cyclone Wind Speed Estimation from Satellite Data
- Authors: Nils Lehmann, Nina Maria Gottschling, Stefan Depeweg, Eric Nalisnick,
- Abstract summary: Deep neural networks (DNNs) have been successfully applied to earth observation (EO) data and opened new research avenues.
This work provides a theoretical and quantitative comparison of uncertainty quantification methods for DNNs applied to the task of wind speed estimation in satellite imagery of tropical cyclones.
We find that predictive uncertainties can be utilized to further improve accuracy and analyze the predictive uncertainties of different methods across storm categories.
- Score: 1.4431283765171916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) have been successfully applied to earth observation (EO) data and opened new research avenues. Despite the theoretical and practical advances of these techniques, DNNs are still considered black box tools and by default are designed to give point predictions. However, the majority of EO applications demand reliable uncertainty estimates that can support practitioners in critical decision making tasks. This work provides a theoretical and quantitative comparison of existing uncertainty quantification methods for DNNs applied to the task of wind speed estimation in satellite imagery of tropical cyclones. We provide a detailed evaluation of predictive uncertainty estimates from state-of-the-art uncertainty quantification (UQ) methods for DNNs. We find that predictive uncertainties can be utilized to further improve accuracy and analyze the predictive uncertainties of different methods across storm categories.
Related papers
- Predicting Tropical Cyclone Track Forecast Errors using a Probabilistic Neural Network [0.6444687821156797]
A new method for estimating tropical cyclone track uncertainty is presented and tested.
This method uses a neural network to predict a bivariate normal distribution, which serves as an estimate for track uncertainty.
We show that our predictions are well calibrated using multiple metrics, that our method produces better uncertainty estimates than current NHC approaches, and that our method achieves similar performance to the Global Ensemble Forecast System.
arXiv Detail & Related papers (2025-03-12T21:00:31Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
We propose a method that integrates efficient and precise uncertainty quantification into a deep learning-based surrogate model.
Our method endows deep learning-based surrogate models with robust and efficient uncertainty quantification capabilities for both forward and inverse problems.
Our method excels at propagating uncertainty over extended auto-regressive rollouts, making it suitable for scenarios involving long-term predictions.
arXiv Detail & Related papers (2024-02-13T11:22:59Z) - Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing
Uncertainty [125.41260574344933]
We consider an encoder-decoder based deep ensemble network for capturing both perception and predictive uncertainty simultaneously.
Overall, deep ensembles provided more robust predictions and the consideration of upstream uncertainty further increased the estimation accuracy for the model.
arXiv Detail & Related papers (2023-05-26T04:27:48Z) - Fast Uncertainty Estimates in Deep Learning Interatomic Potentials [0.0]
We propose a method to estimate the predictive uncertainty based on a single neural network without the need for an ensemble.
We demonstrate that the quality of the uncertainty estimates matches those obtained from deep ensembles.
arXiv Detail & Related papers (2022-11-17T20:13:39Z) - Comparison of Uncertainty Quantification with Deep Learning in Time
Series Regression [7.6146285961466]
In this paper, different uncertainty estimation methods are compared to forecast meteorological time series data.
Results show how each uncertainty estimation method performs on the forecasting task.
arXiv Detail & Related papers (2022-11-11T14:29:13Z) - On Attacking Out-Domain Uncertainty Estimation in Deep Neural Networks [11.929914721626849]
We show that state-of-the-art uncertainty estimation algorithms could fail catastrophically under our proposed adversarial attack.
In particular, we aim at attacking the out-domain uncertainty estimation.
arXiv Detail & Related papers (2022-10-03T23:33:38Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Interval Deep Learning for Uncertainty Quantification in Safety
Applications [0.0]
Current deep neural networks (DNNs) do not have an implicit mechanism to quantify and propagate significant input data uncertainty.
We present a DNN optimized with gradient-based methods capable to quantify input and parameter uncertainty by means of interval analysis.
We show that the Deep Interval Neural Network (DINN) can produce accurate bounded estimates from uncertain input data.
arXiv Detail & Related papers (2021-05-13T17:21:33Z) - Probabilistic Neighbourhood Component Analysis: Sample Efficient
Uncertainty Estimation in Deep Learning [25.8227937350516]
We show that uncertainty estimation capability of state-of-the-art BNNs and Deep Ensemble models degrades significantly when the amount of training data is small.
We propose a probabilistic generalization of the popular sample-efficient non-parametric kNN approach.
Our approach enables deep kNN to accurately quantify underlying uncertainties in its prediction.
arXiv Detail & Related papers (2020-07-18T21:36:31Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
Recurrent neural networks (RNNs) are instrumental in modelling sequential and time-series data.
Existing approaches for uncertainty quantification in RNNs are based predominantly on Bayesian methods.
We develop a frequentist alternative that: (a) does not interfere with model training or compromise its accuracy, (b) applies to any RNN architecture, and (c) provides theoretical coverage guarantees on the estimated uncertainty intervals.
arXiv Detail & Related papers (2020-06-20T22:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.