NC-TTT: A Noise Contrastive Approach for Test-Time Training
- URL: http://arxiv.org/abs/2404.08392v1
- Date: Fri, 12 Apr 2024 10:54:11 GMT
- Title: NC-TTT: A Noise Contrastive Approach for Test-Time Training
- Authors: David Osowiechi, Gustavo A. Vargas Hakim, Mehrdad Noori, Milad Cheraghalikhani, Ali Bahri, Moslem Yazdanpanah, Ismail Ben Ayed, Christian Desrosiers,
- Abstract summary: Noise-Contrastive Test-Time Training (NC-TTT) is a novel unsupervised TTT technique based on the discrimination of noisy feature maps.
By learning to classify noisy views of projected feature maps, and then adapting the model accordingly on new domains, classification performance can be recovered by an important margin.
- Score: 19.0284321951354
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite their exceptional performance in vision tasks, deep learning models often struggle when faced with domain shifts during testing. Test-Time Training (TTT) methods have recently gained popularity by their ability to enhance the robustness of models through the addition of an auxiliary objective that is jointly optimized with the main task. Being strictly unsupervised, this auxiliary objective is used at test time to adapt the model without any access to labels. In this work, we propose Noise-Contrastive Test-Time Training (NC-TTT), a novel unsupervised TTT technique based on the discrimination of noisy feature maps. By learning to classify noisy views of projected feature maps, and then adapting the model accordingly on new domains, classification performance can be recovered by an important margin. Experiments on several popular test-time adaptation baselines demonstrate the advantages of our method compared to recent approaches for this task. The code can be found at:https://github.com/GustavoVargasHakim/NCTTT.git
Related papers
- ClusT3: Information Invariant Test-Time Training [19.461441044484427]
Test-time training (TTT) methods have been developed in an attempt to mitigate these vulnerabilities.
We propose a novel unsupervised TTT technique based on the Mutual of Mutual Information between multi-scale feature maps and a discrete latent representation.
Experimental results demonstrate competitive classification performance on different popular test-time adaptation benchmarks.
arXiv Detail & Related papers (2023-10-18T21:43:37Z) - Improved Test-Time Adaptation for Domain Generalization [48.239665441875374]
Test-time training (TTT) adapts the learned model with test data.
This work addresses two main factors: selecting an appropriate auxiliary TTT task for updating and identifying reliable parameters to update during the test phase.
We introduce additional adaptive parameters for the trained model, and we suggest only updating the adaptive parameters during the test phase.
arXiv Detail & Related papers (2023-04-10T10:12:38Z) - DETA: Denoised Task Adaptation for Few-Shot Learning [135.96805271128645]
Test-time task adaptation in few-shot learning aims to adapt a pre-trained task-agnostic model for capturing taskspecific knowledge.
With only a handful of samples available, the adverse effect of either the image noise (a.k.a. X-noise) or the label noise (a.k.a. Y-noise) from support samples can be severely amplified.
We propose DEnoised Task Adaptation (DETA), a first, unified image- and label-denoising framework to existing task adaptation approaches.
arXiv Detail & Related papers (2023-03-11T05:23:20Z) - TTTFlow: Unsupervised Test-Time Training with Normalizing Flow [18.121961548745112]
A major problem of deep neural networks for image classification is their vulnerability to domain changes at test-time.
Recent methods have proposed to address this problem with test-time training (TTT), where a two-branch model is trained to learn a main classification task and also a self-supervised task used to perform test-time adaptation.
We propose TTTFlow: a Y-shaped architecture using an unsupervised head based on Normalizing Flows to learn the normal distribution of latent features and detect domain shifts in test examples.
arXiv Detail & Related papers (2022-10-20T16:32:06Z) - TeST: Test-time Self-Training under Distribution Shift [99.68465267994783]
Test-Time Self-Training (TeST) is a technique that takes as input a model trained on some source data and a novel data distribution at test time.
We find that models adapted using TeST significantly improve over baseline test-time adaptation algorithms.
arXiv Detail & Related papers (2022-09-23T07:47:33Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
We propose test-time prompt tuning (TPT) to learn adaptive prompts on the fly with a single test sample.
TPT improves the zero-shot top-1 accuracy of CLIP by 3.6% on average.
In evaluating cross-dataset generalization with unseen categories, TPT performs on par with the state-of-the-art approaches that use additional training data.
arXiv Detail & Related papers (2022-09-15T17:55:11Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption [69.76837484008033]
An unresolved problem in Deep Learning is the ability of neural networks to cope with domain shifts during test-time.
We combine meta-learning, self-supervision and test-time training to learn to adapt to unseen test distributions.
Our approach significantly improves the state-of-the-art results on the CIFAR-10-Corrupted image classification benchmark.
arXiv Detail & Related papers (2021-03-30T09:33:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.