CTA: Cross-Task Alignment for Better Test Time Training
- URL: http://arxiv.org/abs/2507.05221v2
- Date: Tue, 08 Jul 2025 13:04:25 GMT
- Title: CTA: Cross-Task Alignment for Better Test Time Training
- Authors: Samuel Barbeau, Pedram Fekri, David Osowiechi, Ali Bahri, Moslem Yazdanpanah, Masih Aminbeidokhti, Christian Desrosiers,
- Abstract summary: Test-Time Training (TTT) has emerged as an effective method to enhance model robustness.<n>We introduce CTA (Cross-Task Alignment), a novel approach for improving TTT.<n>We show substantial improvements in robustness and generalization over the state-of-the-art on several benchmark datasets.
- Score: 10.54024648915477
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models have demonstrated exceptional performance across a wide range of computer vision tasks. However, their performance often degrades significantly when faced with distribution shifts, such as domain or dataset changes. Test-Time Training (TTT) has emerged as an effective method to enhance model robustness by incorporating an auxiliary unsupervised task during training and leveraging it for model updates at test time. In this work, we introduce CTA (Cross-Task Alignment), a novel approach for improving TTT. Unlike existing TTT methods, CTA does not require a specialized model architecture and instead takes inspiration from the success of multi-modal contrastive learning to align a supervised encoder with a self-supervised one. This process enforces alignment between the learned representations of both models, thereby mitigating the risk of gradient interference, preserving the intrinsic robustness of self-supervised learning and enabling more semantically meaningful updates at test-time. Experimental results demonstrate substantial improvements in robustness and generalization over the state-of-the-art on several benchmark datasets.
Related papers
- Smooth-Distill: A Self-distillation Framework for Multitask Learning with Wearable Sensor Data [0.0]
This paper introduces Smooth-Distill, a novel self-distillation framework designed to simultaneously perform human activity recognition (HAR) and sensor placement detection.<n>Unlike conventional distillation methods that require separate teacher and student models, the proposed framework utilizes a smoothed, historical version of the model itself as the teacher.<n> Experimental results show that Smooth-Distill consistently outperforms alternative approaches across different evaluation scenarios.
arXiv Detail & Related papers (2025-06-27T06:51:51Z) - UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines [64.84631333071728]
We introduce bfUnistage, a unified Transformer-based framework fortemporal modeling.<n>Our work demonstrates that a task-specific vision-text can build a generalizable model fortemporal learning.<n>We also introduce a temporal module to incorporate temporal dynamics explicitly.
arXiv Detail & Related papers (2025-03-26T17:33:23Z) - ReC-TTT: Contrastive Feature Reconstruction for Test-Time Training [15.572896213775438]
We propose a test-time training technique that can adapt a deep learning model to new unseen domains.<n>ReC-TTT uses cross-reconstruction as an auxiliary task between a frozen encoder and two trainable encoders.<n>We show that ReC-TTT achieves better results than other state-of-the-art techniques in most domain shift classification challenges.
arXiv Detail & Related papers (2024-11-26T20:38:02Z) - IT$^3$: Idempotent Test-Time Training [95.78053599609044]
Deep learning models often struggle when deployed in real-world settings due to distribution shifts between training and test data.<n>We present Idempotent Test-Time Training (IT$3$), a novel approach that enables on-the-fly adaptation to distribution shifts using only the current test instance.<n>Our results suggest that idempotence provides a universal principle for test-time adaptation that generalizes across domains and architectures.
arXiv Detail & Related papers (2024-10-05T15:39:51Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - ClusT3: Information Invariant Test-Time Training [19.461441044484427]
Test-time training (TTT) methods have been developed in an attempt to mitigate these vulnerabilities.
We propose a novel unsupervised TTT technique based on the Mutual of Mutual Information between multi-scale feature maps and a discrete latent representation.
Experimental results demonstrate competitive classification performance on different popular test-time adaptation benchmarks.
arXiv Detail & Related papers (2023-10-18T21:43:37Z) - Reinforcement Learning for Topic Models [3.42658286826597]
We apply reinforcement learning techniques to topic modeling by replacing the variational autoencoder in ProdLDA with a continuous action space reinforcement learning policy.
We introduce several modifications: modernize the neural network architecture, weight the ELBO loss, use contextual embeddings, and monitor the learning process via computing topic diversity and coherence.
arXiv Detail & Related papers (2023-05-08T16:41:08Z) - Test-Time Adaptation with Perturbation Consistency Learning [32.58879780726279]
We propose a simple test-time adaptation method to promote the model to make stable predictions for samples with distribution shifts.
Our method can achieve higher or comparable performance with less inference time over strong PLM backbones.
arXiv Detail & Related papers (2023-04-25T12:29:22Z) - Composite Learning for Robust and Effective Dense Predictions [81.2055761433725]
Multi-task learning promises better model generalization on a target task by jointly optimizing it with an auxiliary task.
We find that jointly training a dense prediction (target) task with a self-supervised (auxiliary) task can consistently improve the performance of the target task, while eliminating the need for labeling auxiliary tasks.
arXiv Detail & Related papers (2022-10-13T17:59:16Z) - Towards Sequence-Level Training for Visual Tracking [60.95799261482857]
This work introduces a sequence-level training strategy for visual tracking based on reinforcement learning.
Four representative tracking models, SiamRPN++, SiamAttn, TransT, and TrDiMP, consistently improve by incorporating the proposed methods in training.
arXiv Detail & Related papers (2022-08-11T13:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.