論文の概要: Adversarial Imitation Learning via Boosting
- arxiv url: http://arxiv.org/abs/2404.08513v1
- Date: Fri, 12 Apr 2024 14:53:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 14:47:19.136636
- Title: Adversarial Imitation Learning via Boosting
- Title(参考訳): ブースティングによる対人模倣学習
- Authors: Jonathan D. Chang, Dhruv Sreenivas, Yingbing Huang, Kianté Brantley, Wen Sun,
- Abstract要約: 逆模倣学習(AIL)は、様々な模倣学習(IL)アプリケーションにまたがる支配的なフレームワークとして注目されている。
本研究では,ブースティングの枠組みを用いて,新しいAILアルゴリズムを開発した。
我々は,DeepMindから,コントローラの状態ベースと画素ベースの環境の両方でアルゴリズムを評価する。
- 参考スコア(独自算出の注目度): 14.083277701915119
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial imitation learning (AIL) has stood out as a dominant framework across various imitation learning (IL) applications, with Discriminator Actor Critic (DAC) (Kostrikov et al.,, 2019) demonstrating the effectiveness of off-policy learning algorithms in improving sample efficiency and scalability to higher-dimensional observations. Despite DAC's empirical success, the original AIL objective is on-policy and DAC's ad-hoc application of off-policy training does not guarantee successful imitation (Kostrikov et al., 2019; 2020). Follow-up work such as ValueDICE (Kostrikov et al., 2020) tackles this issue by deriving a fully off-policy AIL objective. Instead in this work, we develop a novel and principled AIL algorithm via the framework of boosting. Like boosting, our new algorithm, AILBoost, maintains an ensemble of properly weighted weak learners (i.e., policies) and trains a discriminator that witnesses the maximum discrepancy between the distributions of the ensemble and the expert policy. We maintain a weighted replay buffer to represent the state-action distribution induced by the ensemble, allowing us to train discriminators using the entire data collected so far. In the weighted replay buffer, the contribution of the data from older policies are properly discounted with the weight computed based on the boosting framework. Empirically, we evaluate our algorithm on both controller state-based and pixel-based environments from the DeepMind Control Suite. AILBoost outperforms DAC on both types of environments, demonstrating the benefit of properly weighting replay buffer data for off-policy training. On state-based environments, DAC outperforms ValueDICE and IQ-Learn (Gary et al., 2021), achieving competitive performance with as little as one expert trajectory.
- Abstract(参考訳): AIL(Adversarial mimicion Learning)は、様々な模倣学習(IL)アプリケーションにまたがる支配的なフレームワークとして注目されており、より高次元の観察にサンプル効率とスケーラビリティを向上させるために、非政治的な学習アルゴリズムの有効性を実証している(Kostrikov et al , 2019)。
DACの実証的な成功にもかかわらず、元々のAILの目的は政治上であり、DACの非政治トレーニングのアドホックな適用は、模倣の成功を保証するものではない(Kostrikov et al , 2019; 2020)。
ValueDICE (Kostrikov et al , 2020) のようなフォローアップ作業は、完全な非政治的 AIL 目標を導出することでこの問題に対処する。
本研究では, ブースティングの枠組みを用いて, 斬新で原理化された AIL アルゴリズムを開発する。
ブースティングと同様に、我々の新しいアルゴリズムであるAILBoostは、適切に重み付けされた弱い学習者のアンサンブル(すなわちポリシー)を維持し、アンサンブルの分布とエキスパートポリシーの最大の相違を目撃する識別器を訓練する。
我々は、アンサンブルによって引き起こされる状態-作用分布を表現するために重み付けされたリプレイバッファを保持しており、これまで収集された全データを用いて差別者を訓練することができる。
重み付きリプレイバッファでは、古いポリシーからのデータの寄与を、ブースティングフレームワークに基づいて計算された重みで適切に割引する。
実験により,DeepMind Control Suiteから,コントローラの状態ベースと画素ベースの環境の両方でアルゴリズムを評価した。
AILBoostは、両方の種類の環境でDACより優れており、オフポリシートレーニングのためにリプレイバッファデータを適切に重み付けする利点を示している。
国家ベースの環境では、DACはValueDICEとIQ-Learn(Gary et al , 2021)を上回り、1つの専門家の軌道で競争力を発揮する。
関連論文リスト
- CDSA: Conservative Denoising Score-based Algorithm for Offline Reinforcement Learning [25.071018803326254]
オフラインの強化学習において、分散シフトは大きな障害である。
以前の保守的なオフラインRLアルゴリズムは、目に見えないアクションに一般化するのに苦労した。
本稿では、事前学習したオフラインRLアルゴリズムから生成されたデータセット密度の勾配場を用いて、元の動作を調整することを提案する。
論文 参考訳(メタデータ) (2024-06-11T17:59:29Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
対照的に、CLIP(Contrastive Language- Image Pretraining)はその目覚ましいゼロショット能力で人気を集めている。
近年の研究では、下流タスクにおけるCLIPの性能を高めるための効率的な微調整手法の開発に焦点が当てられている。
従来のアルゴリズムであるガウス判別分析(GDA)を再検討し,CLIPの下流分類に適用する。
論文 参考訳(メタデータ) (2024-02-06T15:45:27Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
本稿では、オフラインシーケンスモデリングとオフライン強化学習をダブルポリシー推定と組み合わせたRLアルゴリズムDPEを提案する。
D4RLベンチマークを用いて,OpenAI Gymの複数のタスクで本手法を検証した。
論文 参考訳(メタデータ) (2023-08-28T20:46:07Z) - Distillation Policy Optimization [5.439020425819001]
本研究では,評価と制御の両面において2つのデータソースを調和させるアクタ批判学習フレームワークを提案する。
このフレームワークには、統一利便推定器(UAE)と残留基線を含む分散還元機構が組み込まれている。
以上の結果から,オンラインアルゴリズムのサンプル効率は大幅に向上し,非政治的アプローチとのギャップを効果的に埋めることができた。
論文 参考訳(メタデータ) (2023-02-01T15:59:57Z) - Boosting Offline Reinforcement Learning via Data Rebalancing [104.3767045977716]
オフライン強化学習(RL)は、学習ポリシーとデータセットの分散シフトによって問題となる。
本稿では,データセットの再サンプリングが分散サポートを一定に保っているという観察に基づいて,オフラインRLアルゴリズムをシンプルかつ効果的に向上させる手法を提案する。
ReD(Return-based Data Re Balance)メソッドをダブします。これは10行未満のコード変更で実装でき、無視できる実行時間を追加します。
論文 参考訳(メタデータ) (2022-10-17T16:34:01Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Reinforcement Learning in the Wild: Scalable RL Dispatching Algorithm
Deployed in Ridehailing Marketplace [12.298997392937876]
本研究では,強化学習に基づくリアルタイムディスパッチアルゴリズムを提案する。
ディディのA/Bテストの運営下にある複数の都市でオンラインに展開され、主要な国際市場の一つで展開されている。
デプロイされたアルゴリズムは、A/Bテストによるドライバーの総収入を1.3%以上改善している。
論文 参考訳(メタデータ) (2022-02-10T16:07:17Z) - BRAC+: Improved Behavior Regularized Actor Critic for Offline
Reinforcement Learning [14.432131909590824]
オフライン強化学習は、以前に収集したデータセットを使用して効果的なポリシーをトレーニングすることを目的としている。
標準的なオフ・ポリティクスRLアルゴリズムは、アウト・オブ・ディストリビューション(探索されていない)アクションの値を過大評価する傾向がある。
動作の規則化によるオフライン強化学習を改善し,BRAC+を提案する。
論文 参考訳(メタデータ) (2021-10-02T23:55:49Z) - Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning [63.53407136812255]
オフライン強化学習は、探索を必要とせずに、事前に収集された静的データセットから効果的なポリシーを学ぶことを約束する。
既存のQラーニングとアクター批判に基づくオフポリティクスRLアルゴリズムは、アウト・オブ・ディストリビューション(OOD)アクションや状態からのブートストラップ時に失敗する。
我々は,OOD状態-動作ペアを検出し,トレーニング目標への貢献度を下げるアルゴリズムであるUncertainty Weighted Actor-Critic (UWAC)を提案する。
論文 参考訳(メタデータ) (2021-05-17T20:16:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。