論文の概要: Non-discrimination law in Europe: a primer for non-lawyers
- arxiv url: http://arxiv.org/abs/2404.08519v2
- Date: Wed, 17 Apr 2024 08:36:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 12:46:40.132422
- Title: Non-discrimination law in Europe: a primer for non-lawyers
- Title(参考訳): 欧州における非差別法--非法律家のためのプライマー
- Authors: Frederik Zuiderveen Borgesius, Nina Baranowska, Philipp Hacker, Alessandro Fabris,
- Abstract要約: 我々は、非法律家や非欧州の弁護士が、その内容や課題を容易に把握できるように、この法律を記述することを目指している。
我々は、多くのEU指令に含まれるEU全体の非差別規則を紹介します。
最後のセクションは、バイアス関連法とEU AI法および関連する法令の事例を含むための地平を広げている。
- 参考スコア(独自算出の注目度): 44.715854387549605
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This brief paper provides an introduction to non-discrimination law in Europe. It answers the questions: What are the key characteristics of non-discrimination law in Europe, and how do the different statutes relate to one another? Our main target group is computer scientists and users of artificial intelligence (AI) interested in an introduction to non-discrimination law in Europe. Notably, non-discrimination law in Europe differs significantly from non-discrimination law in other countries, such as the US. We aim to describe the law in such a way that non-lawyers and non-European lawyers can easily grasp its contents and challenges. The paper shows that the human right to non-discrimination, to some extent, protects individuals against private actors, such as companies. We introduce the EU-wide non-discrimination rules which are included in a number of EU directives, and also explain the difference between direct and indirect discrimination. Significantly, an organization can be fined for indirect discrimination even if the company, or its AI system, discriminated by accident. The last section broadens the horizon to include bias-relevant law and cases from the GDPR, the EU AI Act, and related statutes. Finally, we give reading tips for those inclined to learn more about non-discrimination law in Europe.
- Abstract(参考訳): 本報告では、ヨーロッパでの非差別法について紹介する。
欧州における非差別法の主な特徴は何か、そして、異なる法令は互いにどのように関連しているのか?
私たちの主なターゲットは、コンピュータ科学者と、ヨーロッパでの非差別法導入に関心を持つ人工知能(AI)ユーザです。
特に、ヨーロッパの非差別法は、米国など他の国の非差別法と大きく異なる。
我々は、非法律家や非欧州の弁護士が、その内容や課題を容易に把握できるように、この法律を記述することを目指している。
この論文は、人間による非差別の権利が、ある程度は、個人を企業などの民間の俳優から保護していることを示している。
我々は、多くのEU指令に含まれるEU全体の非差別規則を導入し、また、直接差別と間接差別の違いを説明します。
企業やそのAIシステムが事故によって差別されたとしても、組織は間接的な差別に対して罰金を科すことができる。
最後の節では、バイアス関連法とGDPR、EU AI Act、および関連する法令の事例を含むよう、地平を広げている。
最後に、ヨーロッパでの非差別法についてもっと学ぶ傾向にある人々に対して、読書のヒントを与えます。
関連論文リスト
- Generative Discrimination: What Happens When Generative AI Exhibits Bias, and What Can Be Done About It [2.2913283036871865]
第1章は、genAIが非差別法とどのように交わるかを考察する。
差別的アウトプットには2つの主要な種類がある: (i) 嫌悪的内容と (ii) 保護されたグループの不適切な表現による微妙なバイアス。
差別的なアウトプットに責任を負うgenAIプロバイダやデプロイの保持を主張し、genAI固有の問題に対処する従来の法的枠組みの不十分さを強調している。
論文 参考訳(メタデータ) (2024-06-26T13:32:58Z) - Auditing for Racial Discrimination in the Delivery of Education Ads [50.37313459134418]
本稿では,教育機会のための広告配信において,人種的偏見を評価できる新たな第三者監査手法を提案する。
メタのアルゴリズムによる教育機会の広告配信における人種差別の証拠を見つけ、法的および倫理的懸念を訴える。
論文 参考訳(メタデータ) (2024-06-02T02:00:55Z) - Implications of the AI Act for Non-Discrimination Law and Algorithmic Fairness [1.5029560229270191]
AIにおける公平性というトピックは、ここ数年で意味のある議論を巻き起こした。
法的な見地からは、多くのオープンな疑問が残る。
AI法は、これらの2つのアプローチをブリッジする大きな一歩を踏み出すかもしれない。
論文 参考訳(メタデータ) (2024-03-29T09:54:09Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Algorithmic Unfairness through the Lens of EU Non-Discrimination Law: Or
Why the Law is not a Decision Tree [5.153559154345212]
我々は、EUの非差別法は、コンピュータサイエンス文学において提案されたアルゴリズム的公正の概念と一致していることを示す。
公正度指標と技術的介入の規範的基盤を設定し、これらをEU司法裁判所の法的理由と比較した。
我々は、AI実践者や規制当局に影響を及ぼすと結論づける。
論文 参考訳(メタデータ) (2023-05-05T12:00:39Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Pile of Law: Learning Responsible Data Filtering from the Law and a
256GB Open-Source Legal Dataset [46.156169284961045]
我々は, フィルター材料におけるトレードオフに直接対処する法則に基づくフィルタリングへのアプローチを提案する。
まず、256GBのオープンソース英語および行政データのデータセットであるPile of Lawを収集、利用可能にします。
第二に、政府が有毒または私的コンテンツを含めることを規制するために開発した法規範を精査する。
第3に、Pile of Lawが研究者に、このようなフィルタリングルールを直接データから学習する機会を提供する方法を示します。
論文 参考訳(メタデータ) (2022-07-01T06:25:15Z) - Using sensitive data to prevent discrimination by artificial
intelligence: Does the GDPR need a new exception? [0.0]
ヨーロッパでは、AIシステムが誤って民族によって差別されるかどうかを評価しようとすると、組織が問題に直面します。
原則として、特定の「特定のデータのカテゴリ」の使用を禁じる。
本稿では、個人データの特殊カテゴリに関するルールが、AIによる差別の防止を妨げているかどうかを問う。
論文 参考訳(メタデータ) (2022-05-17T07:39:25Z) - Reusing the Task-specific Classifier as a Discriminator:
Discriminator-free Adversarial Domain Adaptation [55.27563366506407]
非教師付きドメイン適応(UDA)のための識別器なし対向学習ネットワーク(DALN)を導入する。
DALNは、統一された目的によって明確なドメインアライメントとカテゴリの区別を達成する。
DALNは、さまざまなパブリックデータセット上の既存の最先端(SOTA)メソッドと比較して好意的に比較する。
論文 参考訳(メタデータ) (2022-04-08T04:40:18Z) - Why Fairness Cannot Be Automated: Bridging the Gap Between EU
Non-Discrimination Law and AI [10.281644134255576]
欧州における差別の概念と既存の公正性に関する統計的尺度の間には、重大な矛盾がある。
我々は、人間ではなくAIが差別するときに、非差別法によって提供される法的保護がいかに挑戦されるかを示す。
標準基準統計量として「条件付き人口格差」(CDD)を提案する。
論文 参考訳(メタデータ) (2020-05-12T16:30:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。