Non-discrimination law in Europe: a primer for non-lawyers
- URL: http://arxiv.org/abs/2404.08519v2
- Date: Wed, 17 Apr 2024 08:36:50 GMT
- Title: Non-discrimination law in Europe: a primer for non-lawyers
- Authors: Frederik Zuiderveen Borgesius, Nina Baranowska, Philipp Hacker, Alessandro Fabris,
- Abstract summary: We aim to describe the law in such a way that non-lawyers and non-European lawyers can easily grasp its contents and challenges.
We introduce the EU-wide non-discrimination rules which are included in a number of EU directives.
The last section broadens the horizon to include bias-relevant law and cases from the EU AI Act, and related statutes.
- Score: 44.715854387549605
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This brief paper provides an introduction to non-discrimination law in Europe. It answers the questions: What are the key characteristics of non-discrimination law in Europe, and how do the different statutes relate to one another? Our main target group is computer scientists and users of artificial intelligence (AI) interested in an introduction to non-discrimination law in Europe. Notably, non-discrimination law in Europe differs significantly from non-discrimination law in other countries, such as the US. We aim to describe the law in such a way that non-lawyers and non-European lawyers can easily grasp its contents and challenges. The paper shows that the human right to non-discrimination, to some extent, protects individuals against private actors, such as companies. We introduce the EU-wide non-discrimination rules which are included in a number of EU directives, and also explain the difference between direct and indirect discrimination. Significantly, an organization can be fined for indirect discrimination even if the company, or its AI system, discriminated by accident. The last section broadens the horizon to include bias-relevant law and cases from the GDPR, the EU AI Act, and related statutes. Finally, we give reading tips for those inclined to learn more about non-discrimination law in Europe.
Related papers
- Generative Discrimination: What Happens When Generative AI Exhibits Bias, and What Can Be Done About It [2.2913283036871865]
chapter explores how genAI intersects with non-discrimination laws.
It highlights two main types of discriminatory outputs: (i) demeaning and abusive content and (ii) subtler biases due to inadequate representation of protected groups.
It argues for holding genAI providers and deployers liable for discriminatory outputs and highlights the inadequacy of traditional legal frameworks to address genAI-specific issues.
arXiv Detail & Related papers (2024-06-26T13:32:58Z) - Auditing for Racial Discrimination in the Delivery of Education Ads [50.37313459134418]
We propose a new third-party auditing method that can evaluate racial bias in the delivery of ads for education opportunities.
We find evidence of racial discrimination in Meta's algorithmic delivery of ads for education opportunities, posing legal and ethical concerns.
arXiv Detail & Related papers (2024-06-02T02:00:55Z) - Implications of the AI Act for Non-Discrimination Law and Algorithmic Fairness [1.5029560229270191]
The topic of fairness in AI has sparked meaningful discussions in the past years.
From a legal perspective, many open questions remain.
The AI Act might present a tremendous step towards bridging these two approaches.
arXiv Detail & Related papers (2024-03-29T09:54:09Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - Algorithmic Unfairness through the Lens of EU Non-Discrimination Law: Or
Why the Law is not a Decision Tree [5.153559154345212]
We show that EU non-discrimination law coincides with notions of algorithmic fairness proposed in computer science literature.
We set out the normative underpinnings of fairness metrics and technical interventions and compare these to the legal reasoning of the Court of Justice of the EU.
We conclude with implications for AI practitioners and regulators.
arXiv Detail & Related papers (2023-05-05T12:00:39Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Pile of Law: Learning Responsible Data Filtering from the Law and a
256GB Open-Source Legal Dataset [46.156169284961045]
We offer an approach to filtering grounded in law, which has directly addressed the tradeoffs in filtering material.
First, we gather and make available the Pile of Law, a 256GB dataset of open-source English-language legal and administrative data.
Second, we distill the legal norms that governments have developed to constrain the inclusion of toxic or private content into actionable lessons.
Third, we show how the Pile of Law offers researchers the opportunity to learn such filtering rules directly from the data.
arXiv Detail & Related papers (2022-07-01T06:25:15Z) - Using sensitive data to prevent discrimination by artificial
intelligence: Does the GDPR need a new exception? [0.0]
In Europe, an organisation runs into a problem when it wants to assess whether its AI system accidentally discriminates based on ethnicity.
In principle, the bans the use of certain'special categories of data'
This paper asks whether the rules on special categories of personal data hinder the prevention of AI-driven discrimination.
arXiv Detail & Related papers (2022-05-17T07:39:25Z) - Reusing the Task-specific Classifier as a Discriminator:
Discriminator-free Adversarial Domain Adaptation [55.27563366506407]
We introduce a discriminator-free adversarial learning network (DALN) for unsupervised domain adaptation (UDA)
DALN achieves explicit domain alignment and category distinguishment through a unified objective.
DALN compares favorably against the existing state-of-the-art (SOTA) methods on a variety of public datasets.
arXiv Detail & Related papers (2022-04-08T04:40:18Z) - Why Fairness Cannot Be Automated: Bridging the Gap Between EU
Non-Discrimination Law and AI [10.281644134255576]
Article identifies a critical incompatibility between European notions of discrimination and existing statistical measures of fairness.
We show how the legal protection offered by non-discrimination law is challenged when AI, not humans, discriminate.
We propose "conditional demographic disparity" (CDD) as a standard baseline statistical measurement.
arXiv Detail & Related papers (2020-05-12T16:30:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.