Enhancing initial state overlap through orbital optimization for faster molecular electronic ground-state energy estimation
- URL: http://arxiv.org/abs/2404.08565v2
- Date: Thu, 2 May 2024 09:30:57 GMT
- Title: Enhancing initial state overlap through orbital optimization for faster molecular electronic ground-state energy estimation
- Authors: Pauline J. Ollitrault, Cristian L. Cortes, Jerome F. Gonthier, Robert M. Parrish, Dario Rocca, Gian-Luca Anselmetti, Matthias Degroote, Nikolaj Moll, Raffaele Santagati, Michael Streif,
- Abstract summary: We show that an initial state constructed from a single Slater determinant can be optimized without knowledge of the true molecular ground state.
Our method yields one to two orders of magnitude of improvement compared to localized molecular orbitals.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The quantum phase estimation algorithm stands as the primary method for determining the ground state energy of a molecular electronic Hamiltonian on a quantum computer. In this context, the ability to initialize a classically tractable state that has a strong overlap with the desired ground state is critical as it directly affects the runtime of the algorithm. However, several numerical studies have shown that this overlap decays exponentially with system size. In this work, we demonstrate that this decay can be alleviated by optimizing the molecular orbital basis, for an initial state constructed from a single Slater determinant. We propose a practical method to achieve this optimization without knowledge of the true molecular ground state and test this method numerically. By comparing the resulting optimized orbitals to the natural orbitals, we find improved overlap. Specifically, for four iron-sulfur molecules, which are known to suffer from the mentioned decay, we show that our method yields one to two orders of magnitude improvement compared to localized molecular orbitals.
Related papers
- High ground state overlap via quantum embedding methods [2.8300641557130035]
We investigate the preparation of guiding states in the context of quantum embedding methods.
We show that the easy-to-obtain mean-field state will have a sufficiently high overlap with the target state to perform quantum phase estimation.
arXiv Detail & Related papers (2024-08-04T06:29:21Z) - Efficient state preparation for the quantum simulation of molecules in first quantization [0.027042267806481293]
We show how to efficiently map states defined in a Gaussian type orbital basis to a plane wave basis with a scaling that is logarithmic in the number of plane waves.
Our work allows for the first quantum simulation of molecular systems whose end-to-end complexity is truly sublinear in the basis set size.
arXiv Detail & Related papers (2024-06-28T22:46:01Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Orthogonally Constrained Orbital Optimization: assessing changes of
optimal orbitals for orthogonal multi-reference states [0.0]
The choice of molecular orbitals is decisive in configuration interaction calculations.
The approach faithfully recovers the energy of afour-electron Hubbard trimer, whereas state-average calculations can miss the value by a factor 2.5.
arXiv Detail & Related papers (2022-11-15T17:39:39Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Analytical nonadiabatic couplings and gradients within the
state-averaged orbital-optimized variational quantum eigensolver [0.0]
We introduce several technical and analytical extensions to our recent state-averaged orbital-optimized variational quantum eigensolver (SA-OO-VQE) algorithm.
Motivated by the limitations of current quantum computers, the first extension consists in an efficient state-resolution procedure to find the SA-OO-VQE eigenstates.
The second extension allows for the estimation of analytical gradients and non-adiabatic couplings.
arXiv Detail & Related papers (2021-09-09T22:38:56Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Efficient molecule discrimination in electron microcopy through an
optimized orbital angular momentum sorter [0.0]
We consider the problem of discriminating macromolecular structures in an electron microscope.
Our approach is based on maximizing the which-molecule information extracted from the state of each electron.
arXiv Detail & Related papers (2020-01-24T08:55:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.