High ground state overlap via quantum embedding methods
- URL: http://arxiv.org/abs/2408.01940v1
- Date: Sun, 4 Aug 2024 06:29:21 GMT
- Title: High ground state overlap via quantum embedding methods
- Authors: Mihael Erakovic, Freek Witteveen, Dylan Harley, Jakob Günther, Moritz Bensberg, Oinam Romesh Meitei, Minsik Cho, Troy Van Voorhis, Markus Reiher, Matthias Christandl,
- Abstract summary: We investigate the preparation of guiding states in the context of quantum embedding methods.
We show that the easy-to-obtain mean-field state will have a sufficiently high overlap with the target state to perform quantum phase estimation.
- Score: 2.8300641557130035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computers can accurately compute ground state energies using phase estimation, but this requires a guiding state which has significant overlap with the true ground state.For large molecules and extended materials, it becomes difficult to find guiding states with good ground state overlap for growing molecule sizes. Additionally, the required number of qubits and quantum gates may become prohibitively large. One approach for dealing with these challenges is to use a quantum embedding method, which allows a reduction to one or multiple smaller quantum cores embedded in a larger quantum region. In such situations it is unclear how the embedding method affects the hardness of constructing good guiding states. In this work, we therefore investigate the preparation of guiding states in the context of quantum embedding methods. We extend previous work on quantum impurity problems, a framework in which we can rigorously analyze the embedding of a subset of orbitals. While there exist results for optimal active orbital space selection in terms of energy minimization, we rigorously demonstrate how the same principles can be used to define selected orbital spaces for state preparation in terms of the overlap with the ground state. Moreover, we perform numerical studies of molecular systems relevant to biochemistry, one field in which quantum embedding methods are required due to the large size of biomacromolecules such as proteins and nucleic acids. We investigate two different embedding strategies which can exhibit qualitatively different orbital entanglement. In all cases we demonstrate that the easy-to-obtain mean-field state will have a sufficiently high overlap with the target state to perform quantum phase estimation.
Related papers
- Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Quantum bistability in the hyperfine ground state of atoms [0.0]
We show that atoms in an optical cavity can manifest a first-order dissipative phase transition.
These states include hyperfine ground states of atoms and coherent states of electromagnetic field modes.
arXiv Detail & Related papers (2023-03-03T12:42:50Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Quantum Davidson Algorithm for Excited States [42.666709382892265]
We introduce the quantum Krylov subspace (QKS) method to address both ground and excited states.
By using the residues of eigenstates to expand the Krylov subspace, we formulate a compact subspace that aligns closely with the exact solutions.
Using quantum simulators, we employ the novel QDavidson algorithm to delve into the excited state properties of various systems.
arXiv Detail & Related papers (2022-04-22T15:03:03Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Determining ground-state phase diagrams on quantum computers via a
generalized application of adiabatic state preparation [61.49303789929307]
We use a local adiabatic ramp for state preparation to allow us to directly compute ground-state phase diagrams on a quantum computer via time evolution.
We are able to calculate an accurate phase diagram on both two and three site systems using IBM quantum machines.
arXiv Detail & Related papers (2021-12-08T23:59:33Z) - Quantifying the difference between many-body quantum states [0.0]
We introduce the weighted distances, a new class of information-theoretic measures.
They quantify how hard it is to discriminate between two quantum states of many particles.
They can be used to evaluate both the theoretical and the experimental performances of complex quantum devices.
arXiv Detail & Related papers (2020-12-10T12:10:09Z) - A state-averaged orbital-optimized hybrid quantum-classical algorithm
for a democratic description of ground and excited states [0.0]
In the Noisy Intermediate-Scale Quantum (NISQ) era, solving the electronic structure problem from chemistry is considered as the "killer application"
We introduce a method called "State-Averaged Orbital-d Variationalsolver" (SA-OO-VQE) which combines two algorithms.
We show that merging both algorithms fulfil the necessary condition to describe the molecule's conical intersection.
arXiv Detail & Related papers (2020-09-23T23:27:51Z) - Identification of molecular quantum states using phase-sensitive forces [0.0]
We demonstrate an enhanced quantum protocol for molecular state detection using state-dependent forces.
Our approach is based on interfering a reference and a signal force applied to a single atomic and molecular ion.
We use this phase information to identify states embedded in a dense molecular energy-level structure and to monitor state-to-state inelastic scattering processes.
arXiv Detail & Related papers (2020-04-11T04:52:48Z) - Preparation of a superposition of squeezed coherent states of a cavity
field via coupling to a superconducting charge qubit [0.0]
We will discuss the issue of the generation of nonclassical states in the context of a superconducting qubit in a microcavity.
The key ingredients to engineer these quantum states are a tunable gate voltage and a classical magnetic field applied to SQUID.
arXiv Detail & Related papers (2020-03-20T18:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.