Hyperbolic Delaunay Geometric Alignment
- URL: http://arxiv.org/abs/2404.08608v1
- Date: Fri, 12 Apr 2024 17:14:58 GMT
- Title: Hyperbolic Delaunay Geometric Alignment
- Authors: Aniss Aiman Medbouhi, Giovanni Luca Marchetti, Vladislav Polianskii, Alexander Kravberg, Petra Poklukar, Anastasia Varava, Danica Kragic,
- Abstract summary: We propose a similarity score for comparing datasets in a hyperbolic space.
The core idea is counting the edges of the hyperbolic Delaunay graph connecting datapoints across the given sets.
We provide an empirical investigation on synthetic and real-life biological data and demonstrate that HyperDGA outperforms the hyperbolic version of classical distances between sets.
- Score: 52.835250875177756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperbolic machine learning is an emerging field aimed at representing data with a hierarchical structure. However, there is a lack of tools for evaluation and analysis of the resulting hyperbolic data representations. To this end, we propose Hyperbolic Delaunay Geometric Alignment (HyperDGA) -- a similarity score for comparing datasets in a hyperbolic space. The core idea is counting the edges of the hyperbolic Delaunay graph connecting datapoints across the given sets. We provide an empirical investigation on synthetic and real-life biological data and demonstrate that HyperDGA outperforms the hyperbolic version of classical distances between sets. Furthermore, we showcase the potential of HyperDGA for evaluating latent representations inferred by a Hyperbolic Variational Auto-Encoder.
Related papers
- Shedding Light on Problems with Hyperbolic Graph Learning [2.3743504594834635]
Recent papers in the graph machine learning literature have introduced a number of approaches for hyperbolic representation learning.
We take a careful look at the field of hyperbolic graph representation learning as it stands today.
We find that a number of papers fail to diligently present baselines, make faulty modelling assumptions when constructing algorithms, and use misleading metrics to quantify geometry of graph datasets.
arXiv Detail & Related papers (2024-11-11T03:12:41Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Hyperbolic vs Euclidean Embeddings in Few-Shot Learning: Two Sides of
the Same Coin [49.12496652756007]
We show that the best few-shot results are attained for hyperbolic embeddings at a common hyperbolic radius.
In contrast to prior benchmark results, we demonstrate that better performance can be achieved by a fixed-radius encoder equipped with the Euclidean metric.
arXiv Detail & Related papers (2023-09-18T14:51:46Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - HGWaveNet: A Hyperbolic Graph Neural Network for Temporal Link
Prediction [9.110162634132827]
We propose HGWaveNet, a novel hyperbolic graph neural network that fully exploits the fitness between hyperbolic spaces and data distributions for temporal link prediction.
Specifically, we design two key modules to learn the spatial topological structures and temporal evolutionary information separately.
The results show a relative improvement by up to 6.67% on AUC for temporal link prediction over SOTA methods.
arXiv Detail & Related papers (2023-04-14T07:07:00Z) - HRCF: Enhancing Collaborative Filtering via Hyperbolic Geometric
Regularization [52.369435664689995]
We introduce a textitHyperbolic Regularization powered Collaborative Filtering (HRCF) and design a geometric-aware hyperbolic regularizer.
Specifically, the proposal boosts optimization procedure via the root alignment and origin-aware penalty.
Our proposal is able to tackle the over-smoothing problem caused by hyperbolic aggregation and also brings the models a better discriminative ability.
arXiv Detail & Related papers (2022-04-18T06:11:44Z) - Enhancing Hyperbolic Graph Embeddings via Contrastive Learning [7.901082408569372]
We propose a novel Hyperbolic Graph Contrastive Learning (HGCL) framework which learns node representations through multiple hyperbolic spaces.
Experimental results on multiple real-world datasets demonstrate the superiority of the proposed HGCL.
arXiv Detail & Related papers (2022-01-21T06:10:05Z) - Unit Ball Model for Hierarchical Embeddings in Complex Hyperbolic Space [28.349200177632852]
Learning the representation of data with hierarchical structures in the hyperbolic space attracts increasing attention in recent years.
We propose to learn the graph embeddings in the unit ball model of the complex hyperbolic space.
arXiv Detail & Related papers (2021-05-09T16:09:54Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
We build off of semi-implicit graph variational auto-encoders to capture higher-order statistics in a low-dimensional graph latent representation.
We incorporate hyperbolic geometry in the latent space through a Poincare embedding to efficiently represent graphs exhibiting hierarchical structure.
arXiv Detail & Related papers (2020-10-31T05:48:34Z) - A Fully Hyperbolic Neural Model for Hierarchical Multi-Class
Classification [7.8176853587105075]
Hyperbolic spaces offer a mathematically appealing approach for learning hierarchical representations of symbolic data.
This work proposes a fully hyperbolic model for multi-class multi-label classification, which performs all operations in hyperbolic space.
A thorough analysis sheds light on the impact of each component in the final prediction and showcases its ease of integration with Euclidean layers.
arXiv Detail & Related papers (2020-10-05T14:42:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.