A Set-to-Set Distance Measure in Hyperbolic Space
- URL: http://arxiv.org/abs/2506.18529v1
- Date: Mon, 23 Jun 2025 11:31:40 GMT
- Title: A Set-to-Set Distance Measure in Hyperbolic Space
- Authors: Pengxiang Li, Wei Wu, Zhi Gao, Xiaomeng Fan, Peilin Yu, Yuwei Wu, Zhipeng Lu, Yunde Jia, Mehrtash Harandi,
- Abstract summary: We propose a hyperbolic set-to-set distance measure for computing dissimilarity between sets in hyperbolic space.<n>By considering the topological differences, HS2SD provides a more nuanced understanding of the relationships between two hyperbolic sets.
- Score: 50.134086375286074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a hyperbolic set-to-set distance measure for computing dissimilarity between sets in hyperbolic space. While point-to-point distances in hyperbolic space effectively capture hierarchical relationships between data points, many real-world applications require comparing sets of hyperbolic data points, where the local structure and the global structure of the sets carry crucial semantic information. The proposed the \underline{h}yperbolic \underline{s}et-\underline{to}-\underline{s}et \underline{d}istance measure (HS2SD) integrates both global and local structural information: global structure through geodesic distances between Einstein midpoints of hyperbolic sets, and local structure through topological characteristics of the two sets. To efficiently compute topological differences, we prove that using a finite Thue-Morse sequence of degree and adjacency matrices can serve as a robust approximation to capture the topological structure of a set. In this case, by considering the topological differences, HS2SD provides a more nuanced understanding of the relationships between two hyperbolic sets. Empirical evaluation on entity matching, standard image classification, and few-shot image classification demonstrates that our distance measure outperforms existing methods by effectively modeling the hierarchical and complex relationships inherent in hyperbolic sets.
Related papers
- Geometry-aware Distance Measure for Diverse Hierarchical Structures in Hyperbolic Spaces [48.948334221681684]
We propose a geometry-aware distance measure in hyperbolic spaces, which dynamically adapts to varying hierarchical structures.<n>Our approach consistently outperforms learning methods that use fixed distance measures.<n>Visualization shows clearer class boundaries and improved prototype separation in hyperbolic spaces.
arXiv Detail & Related papers (2025-06-23T11:43:39Z) - Cartan Networks: Group theoretical Hyperbolic Deep Learning [0.3749861135832073]
We propose a new class of hyperbolic deep learning algorithms where group homomorphisms are interleaved with metric-preserving diffeomorphisms.<n>The resulting algorithms, which we call Cartan networks, show promising results on various benchmark data sets.
arXiv Detail & Related papers (2025-05-30T08:45:53Z) - Hyperbolic Delaunay Geometric Alignment [52.835250875177756]
We propose a similarity score for comparing datasets in a hyperbolic space.
The core idea is counting the edges of the hyperbolic Delaunay graph connecting datapoints across the given sets.
We provide an empirical investigation on synthetic and real-life biological data and demonstrate that HyperDGA outperforms the hyperbolic version of classical distances between sets.
arXiv Detail & Related papers (2024-04-12T17:14:58Z) - Understanding and Mitigating Hyperbolic Dimensional Collapse in Graph Contrastive Learning [70.0681902472251]
We propose a novel contrastive learning framework to learn high-quality graph embeddings in hyperbolic space.<n>Specifically, we design the alignment metric that effectively captures the hierarchical data-invariant information.<n>We show that in the hyperbolic space one has to address the leaf- and height-level uniformity related to properties of trees.
arXiv Detail & Related papers (2023-10-27T15:31:42Z) - $\text{H}^2\text{TNE}$: Temporal Heterogeneous Information Network Embedding in Hyperbolic Spaces [16.31067633778912]
We propose a hyperbolic heterogeneous temporal network embedding model for temporal HINs.
Specifically, we leverage a temporally and heterogeneously double-constrained random walk strategy to capture the structural and semantic information.
Experimental results show that our method has superior performance on temporal link prediction and node classification compared with SOTA models.
arXiv Detail & Related papers (2023-04-14T07:39:52Z) - FFHR: Fully and Flexible Hyperbolic Representation for Knowledge Graph
Completion [45.470475498688344]
Some important operations in hyperbolic space still lack good definitions, making existing methods unable to fully leverage the merits of hyperbolic space.
We develop a textbfFully and textbfFlexible textbfHyperbolic textbfRepresentation framework (textbfFFHR) that is able to transfer recent Euclidean-based advances to hyperbolic space.
arXiv Detail & Related papers (2023-02-07T14:50:28Z) - Geometry Interaction Knowledge Graph Embeddings [153.69745042757066]
We propose Geometry Interaction knowledge graph Embeddings (GIE), which learns spatial structures interactively between the Euclidean, hyperbolic and hyperspherical spaces.
Our proposed GIE can capture a richer set of relational information, model key inference patterns, and enable expressive semantic matching across entities.
arXiv Detail & Related papers (2022-06-24T08:33:43Z) - Highly Scalable and Provably Accurate Classification in Poincare Balls [40.82908295137667]
We establish a unified framework for learning scalable and simple hyperbolic linear classifiers with provable performance guarantees.
Our results include a new hyperbolic and second-order perceptron algorithm as well as an efficient and highly accurate convex optimization setup for hyperbolic support vector machine classifiers.
Their performance accuracies on synthetic data sets comprising millions of points, as well as on complex real-world data sets such as single-cell RNA-seq expression measurements, CIFAR10, Fashion-MNIST and mini-ImageNet.
arXiv Detail & Related papers (2021-09-08T16:59:39Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Hyperbolic Distance Matrices [31.90021739879016]
We propose a unified framework to compute hyperbolic embeddings from an arbitrary mix of noisy metric and non-metric data.
Our algorithms are based on semidefinite programming and the notion of a hyperbolic distance matrix.
We show through numerical experiments how the flexibility to mix metric and non-metric constraints allows us to efficiently compute embeddings from arbitrary data.
arXiv Detail & Related papers (2020-05-18T12:59:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.