Extractive text summarisation of Privacy Policy documents using machine learning approaches
- URL: http://arxiv.org/abs/2404.08686v1
- Date: Tue, 9 Apr 2024 04:54:08 GMT
- Title: Extractive text summarisation of Privacy Policy documents using machine learning approaches
- Authors: Chanwoo Choi,
- Abstract summary: This work demonstrates two Privacy Policy (PP) summarisation models based on two different clustering algorithms.
Kmeans is be used for the first model after an extensive evaluation of ten commonly used clustering algorithms.
The summariser model based on the PDC-clustering algorithm summarises PP documents by segregating individual sentences by distance each sentence to the pre-defined cluster centres.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work demonstrates two Privacy Policy (PP) summarisation models based on two different clustering algorithms: K-means clustering and Pre-determined Centroid (PDC) clustering. K-means is decided to be used for the first model after an extensive evaluation of ten commonly used clustering algorithms. The summariser model based on the PDC-clustering algorithm summarises PP documents by segregating individual sentences by Euclidean distance from each sentence to the pre-defined cluster centres. The cluster centres are defined according to General Data Protection Regulation (GDPR)'s 14 essential topics that must be included in any privacy notices. The PDC model outperformed the K-means model for two evaluation methods, Sum of Squared Distance (SSD) and ROUGE by some margin (27% and 24% respectively). This result contrasts the K-means model's better performance in the general clustering of sentence vectors before running the task-specific evaluation. This indicates the effectiveness of operating task-specific fine-tuning measures on unsupervised machine-learning models. The summarisation mechanisms implemented in this paper demonstrates an idea of how to efficiently extract essential sentences that should be included in any PP documents. The summariser models could be further developed to an application that tests the GDPR-compliance (or any data privacy legislation) of PP documents.
Related papers
- A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Time series clustering based on prediction accuracy of global
forecasting models [0.0]
A novel method to perform model-based clustering of time series is proposed in this paper.
Unlike most techniques proposed in the literature, the method considers the predictive accuracy as the main element for constructing the clustering partition.
An extensive simulation study shows that our method outperforms several alternative techniques concerning both clustering effectiveness and predictive accuracy.
arXiv Detail & Related papers (2023-04-30T13:12:19Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
clustering clusters (FedC) problem aims to accurately partition unlabeled data samples distributed over massive clients into finite clients under the orchestration of a server.
We propose a novel FedC algorithm using differential privacy convergence technique, referred to as DP-Fed, in which partial participation and multiple clients are also considered.
Various attributes of the proposed DP-Fed are obtained through theoretical analyses of privacy protection, especially for the case of non-identically and independently distributed (non-i.i.d.) data.
arXiv Detail & Related papers (2023-01-03T05:38:43Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
The paper proposes a family of communication efficient methods for distributed learning in heterogeneous environments.
One-shot approach, based on local computations at the users and a clustering based aggregation step at the server is shown to provide strong learning guarantees.
For strongly convex problems it is shown that, as long as the number of data points per user is above a threshold, the proposed approach achieves order-optimal mean-squared error rates in terms of the sample size.
arXiv Detail & Related papers (2022-09-22T09:04:10Z) - Gradient Based Clustering [72.15857783681658]
We propose a general approach for distance based clustering, using the gradient of the cost function that measures clustering quality.
The approach is an iterative two step procedure (alternating between cluster assignment and cluster center updates) and is applicable to a wide range of functions.
arXiv Detail & Related papers (2022-02-01T19:31:15Z) - A Proposition-Level Clustering Approach for Multi-Document Summarization [82.4616498914049]
We revisit the clustering approach, grouping together propositions for more precise information alignment.
Our method detects salient propositions, clusters them into paraphrastic clusters, and generates a representative sentence for each cluster by fusing its propositions.
Our summarization method improves over the previous state-of-the-art MDS method in the DUC 2004 and TAC 2011 datasets.
arXiv Detail & Related papers (2021-12-16T10:34:22Z) - Determinantal consensus clustering [77.34726150561087]
We propose the use of determinantal point processes or DPP for the random restart of clustering algorithms.
DPPs favor diversity of the center points within subsets.
We show through simulations that, contrary to DPP, this technique fails both to ensure diversity, and to obtain a good coverage of all data facets.
arXiv Detail & Related papers (2021-02-07T23:48:24Z) - Fair Algorithms for Hierarchical Agglomerative Clustering [17.66340013352806]
Hierarchical Agglomerative Clustering (HAC) algorithms are extensively utilized in modern data science.
It is imperative to ensure that these algorithms are fair -- even if the dataset contains biases against certain protected groups.
We propose fair algorithms for performing HAC that enforce fairness constraints.
arXiv Detail & Related papers (2020-05-07T01:41:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.