論文の概要: Can Contrastive Learning Refine Embeddings
- arxiv url: http://arxiv.org/abs/2404.08701v1
- Date: Thu, 11 Apr 2024 01:16:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 19:11:57.986939
- Title: Can Contrastive Learning Refine Embeddings
- Title(参考訳): コントラスト学習は埋め込みを補うことができるか
- Authors: Lihui Liu, Jinha Kim, Vidit Bansal,
- Abstract要約: SIMSKIPは、下流タスクの入力埋め込みを特に洗練する対照的な学習フレームワークである。
SIMSKIPは,従来の埋め込みよりも下流タスクエラーの上限が大きくないことを示す。
- 参考スコア(独自算出の注目度): 7.212172283470726
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in contrastive learning have revolutionized self-supervised representation learning and achieved state-of-the-art performance on benchmark tasks. While most existing methods focus on applying contrastive learning to input data modalities such as images, natural language sentences, or networks, they overlook the potential of utilizing outputs from previously trained encoders. In this paper, we introduce SIMSKIP, a novel contrastive learning framework that specifically refines input embeddings for downstream tasks. Unlike traditional unsupervised learning approaches, SIMSKIP takes advantage of the output embeddings of encoder models as its input. Through theoretical analysis, we provide evidence that applying SIMSKIP does not result in larger upper bounds on downstream task errors than those of the original embeddings, which serve as SIMSKIP's input. Experimental results on various open datasets demonstrate that the embeddings produced by SIMSKIP improve performance on downstream tasks.
- Abstract(参考訳): コントラスト学習の最近の進歩は、自己指導型表現学習に革命をもたらし、ベンチマークタスクにおける最先端のパフォーマンスを達成した。
既存のほとんどの手法は、画像、自然言語文、ネットワークなどのデータモダリティの入力にコントラスト学習を適用することに重点を置いているが、以前は訓練されていたエンコーダの出力を利用する可能性を見落としている。
本稿では,下流タスクの入力埋め込みを改良する新しいコントラスト学習フレームワークであるSIMSKIPを紹介する。
従来の教師なし学習アプローチとは異なり、SIMSKIPはエンコーダモデルの出力埋め込みを入力として利用する。
理論的解析により、SIMSKIPの適用は、SIMSKIPの入力として機能する元の埋め込みよりも下流タスクエラーの上限が大きいという証拠を提供する。
様々なオープンデータセットの実験結果から,SIMSKIPが生成する埋め込みにより,下流タスクの性能が向上することが示された。
関連論文リスト
- DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
インコンテキスト学習(ICL)により、トランスフォーマーベースの言語モデルでは、パラメータを更新することなく、いくつかの"タスクデモ"で特定のタスクを学習することができる。
ICLの特徴に対処する影響関数に基づく帰属手法DETAILを提案する。
ホワイトボックスモデルで得られた属性スコアがブラックボックスモデルに転送可能であることを示すことにより、モデル性能を向上させる上で、DETAILの広範な適用性を実験的に証明する。
論文 参考訳(メタデータ) (2024-05-22T15:52:52Z) - Value Explicit Pretraining for Learning Transferable Representations [11.069853883599102]
本稿では,伝達強化学習のための一般化可能な表現を学習する手法を提案する。
我々は、目的条件付き表現のためのエンコーダを学習することで、前回学習したタスクと同様の目的を共有する新しいタスクを学ぶ。
現実的なナビゲーションシミュレータとAtariベンチマークを用いて実験したところ,本手法により生成された事前学習エンコーダは,現在のSoTA事前学習法より優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-19T17:12:35Z) - Continual Contrastive Spoken Language Understanding [33.09005399967931]
COCONUTは、経験リプレイとコントラスト学習の組み合わせに依存するクラスインクリメンタルラーニング(CIL)手法である。
我々は,COCONUTをデコーダ側で動作するメソッドと組み合わせることで,さらなるメトリクス改善を実現することを示す。
論文 参考訳(メタデータ) (2023-10-04T10:09:12Z) - Artificial-Spiking Hierarchical Networks for Vision-Language
Representation Learning [16.902924543372713]
最先端の手法は、大規模データセットの事前トレーニングによって、素晴らしいパフォーマンスを達成する。
本稿では,新しい視覚的セマンティックモジュールを導入することで,マルチモーダルアライメントのための効率的なフレームワークを提案する。
実験の結果、提案されたASH-Netsは競合する結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-18T10:40:25Z) - CTP: Towards Vision-Language Continual Pretraining via Compatible
Momentum Contrast and Topology Preservation [128.00940554196976]
Vision-Language Continual Pretraining (VLCP)は、大規模なデータセット上でオフラインでトレーニングすることで、さまざまな下流タスクに対して印象的な結果を示している。
VLCP(Vision-Language Continual Pretraining)の研究を支援するために,我々はまず,包括的で統一されたベンチマークデータセットP9Dをコントリビュートする。
独立したタスクとしての各業界からのデータは、継続的な学習をサポートし、Webデータの事前学習をシミュレートする現実世界のロングテールな性質に準拠している。
論文 参考訳(メタデータ) (2023-08-14T13:53:18Z) - Contrastive variational information bottleneck for aspect-based
sentiment analysis [36.83876224466177]
CVIB(Contrastive Variational Information Bottleneck)フレームワークを用いて,アスペクトベース感情分析(ABSA)の素早い相関性を低減することを提案する。
提案するCVIBフレームワークは,元のネットワークと自走ネットワークで構成され,これら2つのネットワークは,コントラスト学習によって同時に最適化される。
提案手法は, 全体的な予測性能, 堅牢性, 一般化の点で, 強力な競合相手よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2023-03-06T02:52:37Z) - CCLF: A Contrastive-Curiosity-Driven Learning Framework for
Sample-Efficient Reinforcement Learning [56.20123080771364]
我々は、強化学習のためのモデルに依存しないコントラスト駆動学習フレームワーク(CCLF)を開発した。
CCLFは、サンプルの重要性を完全に活用し、自己管理的な学習効率を向上させる。
このアプローチをDeepMind Control Suite、Atari、MiniGridベンチマークで評価する。
論文 参考訳(メタデータ) (2022-05-02T14:42:05Z) - Learning by Distillation: A Self-Supervised Learning Framework for
Optical Flow Estimation [71.76008290101214]
DistillFlowは光の流れを学ぶための知識蒸留手法である。
KITTIとSintelの両方のデータセット上で、最先端の教師なし学習性能を実現する。
我々のモデルは、KITTI 2015ベンチマークにおけるすべての単分子的手法の中で、第1位にランクされ、Sintel Finalベンチマークで発表されたすべてのメソッドよりも優れています。
論文 参考訳(メタデータ) (2021-06-08T09:13:34Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。