論文の概要: The Generation Gap:Exploring Age Bias in the Underlying Value Systems of Large Language Models
- arxiv url: http://arxiv.org/abs/2404.08760v2
- Date: Mon, 13 May 2024 22:11:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 18:42:17.847001
- Title: The Generation Gap:Exploring Age Bias in the Underlying Value Systems of Large Language Models
- Title(参考訳): 世代ギャップ:大規模言語モデルの下位値システムにおける年齢バイアスの探索
- Authors: Siyang Liu, Trish Maturi, Bowen Yi, Siqi Shen, Rada Mihalcea,
- Abstract要約: 我々は,若年層に対するLarge Language Models(LLMs)値の一般的な傾向を見出した。
また、年齢の異なるコホートで価値の相違を緩和する上での課題も観察する。
- 参考スコア(独自算出の注目度): 26.485974783643464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the alignment of values in Large Language Models (LLMs) with specific age groups, leveraging data from the World Value Survey across thirteen categories. Through a diverse set of prompts tailored to ensure response robustness, we find a general inclination of LLM values towards younger demographics. Additionally, we explore the impact of incorporating age identity information in prompts and observe challenges in mitigating value discrepancies with different age cohorts. Our findings highlight the age bias in LLMs and provide insights for future work.
- Abstract(参考訳): 本稿では,大言語モデル(LLM)と特定の年齢群とのアライメントについて検討し,13のカテゴリにわたる世界価値調査のデータを活用する。
応答の堅牢性を確保するために調整された多様なプロンプトを通じて、若年層に対するLCM値の一般的な傾きを見いだす。
さらに、年齢識別情報をプロンプトに取り入れることによる影響について検討し、年齢コホートによる価値の相違を緩和する上での課題を考察する。
以上の結果から,LSMの年齢バイアスが明らかとなり,今後の研究への洞察が得られた。
関連論文リスト
- CEB: Compositional Evaluation Benchmark for Fairness in Large Language Models [58.57987316300529]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを処理するために、ますます多くデプロイされている。
LLMが示すバイアスを評価するために、研究者は最近、様々なデータセットを提案している。
我々は,様々な社会的グループやタスクにまたがる様々なバイアスをカバーした構成的評価ベンチマークであるCEBを提案する。
論文 参考訳(メタデータ) (2024-07-02T16:31:37Z) - LIDAO: Towards Limited Interventions for Debiasing (Large) Language Models [19.18522268167047]
大規模言語モデル(LLM)は、様々な自然言語生成タスクにおいて印象的なパフォーマンスを達成した。
しかし、一部の人口集団に偏った、ネガティブで有害なコンテンツを生み出すことに苦しむ。
本稿では,(L)LMを高い流速で脱バイアスするフレームワークであるLIDAOを提案する。
論文 参考訳(メタデータ) (2024-06-01T20:12:54Z) - TextAge: A Curated and Diverse Text Dataset for Age Classification [1.4843200329335289]
年齢に関連する言語パターンは、言語の違いを理解し、年齢に合ったコミュニケーション戦略を開発する上で重要な役割を担っている。
著者の年齢・年齢グループに文章をマッピングするテキストデータセットであるTextAgeを提示する。
データセットは、データ品質と一貫性を保証するために、広範囲なクリーニングと前処理を行う。
論文 参考訳(メタデータ) (2024-05-02T23:37:03Z) - Groundedness in Retrieval-augmented Long-form Generation: An Empirical Study [61.74571814707054]
検索した文書やモデルの事前学習データに生成されたすべての文が接地されているかどうかを評価する。
3つのデータセットと4つのモデルファミリーにまたがって、生成した文のかなりの部分が一貫してアングラウンド化されていることが明らかとなった。
以上の結果から,より大きなモデルではアウトプットをより効果的に基礎づける傾向にあるものの,正解のかなりの部分が幻覚によって損なわれていることが示唆された。
論文 参考訳(メタデータ) (2024-04-10T14:50:10Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Dive into the Chasm: Probing the Gap between In- and Cross-Topic
Generalization [66.4659448305396]
本研究は,3つの探索型実験を用いて種々のLMを解析し,In- vs. クロストピック一般化ギャップの背景にある理由を明らかにした。
はじめに、一般化ギャップと埋め込み空間の堅牢性は、LM間で大きく異なることを示した。
論文 参考訳(メタデータ) (2024-02-02T12:59:27Z) - On the steerability of large language models toward data-driven personas [98.9138902560793]
大規模言語モデル(LLM)は、特定のグループや集団の意見が不足している偏りのある応答を生成することが知られている。
本稿では, LLM を用いて特定の視点の制御可能な生成を実現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T19:01:13Z) - SVLDL: Improved Speaker Age Estimation Using Selective Variance Label
Distribution Learning [24.57668015470307]
本稿では,年齢分布の分散に適応するために,SVLDL法を提案する。
モデルは、WavLMを音声特徴抽出器として使用し、さらにパフォーマンスを向上させるために、性別認識の補助タスクを追加する。
実験の結果,NIST SRE08-10と実世界のデータセットのすべての面において,最先端のパフォーマンスが得られた。
論文 参考訳(メタデータ) (2022-10-18T01:34:31Z) - Enhancing Facial Data Diversity with Style-based Face Aging [59.984134070735934]
特に、顔データセットは、通常、性別、年齢、人種などの属性の観点からバイアスされる。
本稿では, 細粒度の老化パターンをキャプチャするデータ拡張のための, 生成スタイルに基づく新しいアーキテクチャを提案する。
提案手法は, 年齢移動のための最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-06T21:53:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。