論文の概要: AGR: Age Group fairness Reward for Bias Mitigation in LLMs
- arxiv url: http://arxiv.org/abs/2409.04340v1
- Date: Fri, 6 Sep 2024 15:18:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-09 15:24:36.126175
- Title: AGR: Age Group fairness Reward for Bias Mitigation in LLMs
- Title(参考訳): AGR:LLMにおけるバイアス低減のための年齢グループフェアネス・リワード
- Authors: Shuirong Cao, Ruoxi Cheng, Zhiqiang Wang,
- Abstract要約: RLHFのための年齢バイアス優先データセットと命令調整データセットを構築する。
年齢集団間でのLDMの応答品質の差を低減するために, 年齢フェアネス報酬であるARGを導入する。
- 参考スコア(独自算出の注目度): 3.1244204900991623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLMs can exhibit age biases, resulting in unequal treatment of individuals across age groups. While much research has addressed racial and gender biases, age bias remains little explored. The scarcity of instruction-tuning and preference datasets for age bias hampers its detection and measurement, and existing fine-tuning methods seldom address age-related fairness. In this paper, we construct age bias preference datasets and instruction-tuning datasets for RLHF. We introduce ARG, an age fairness reward to reduce differences in the response quality of LLMs across different age groups. Extensive experiments demonstrate that this reward significantly improves response accuracy and reduces performance disparities across age groups. Our source code and datasets are available at the anonymous \href{https://anonymous.4open.science/r/FairRLHF-D445/readme.md}{link}.
- Abstract(参考訳): LLMは年齢バイアスを示すことができ、結果として年齢グループ全体で個人が不平等に扱われる。
多くの研究が人種や性別の偏見に対処しているが、年齢の偏見はほとんど調査されていない。
年齢バイアスに対する指示調整と選好データセットの不足は、その検出と測定を妨げ、既存の微調整手法は、年齢に関する公平さにほとんど対処しない。
本稿では,RLHFのための年齢差優先データセットと命令調整データセットを構築する。
年齢集団間でのLDMの応答品質の差を低減するために, 年齢フェアネス報酬であるARGを導入する。
大規模な実験により、この報酬は応答精度を大幅に改善し、年齢群間の性能格差を低減することが示されている。
我々のソースコードとデータセットは匿名の \href{https://anonymous.4open.science/r/FairRLHF-D445/readme.md}{link} で入手できる。
関連論文リスト
- Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [56.24431208419858]
報奨条件付き大言語モデル(LLM)を導入し、データセット内の応答品質のスペクトル全体から学習する。
そこで本稿では,品質スコアに優先ペアを条件付け,報酬を加算したデータセットを構築する,効果的なデータレバーベリング手法を提案する。
論文 参考訳(メタデータ) (2024-10-10T16:01:51Z) - The Generation Gap: Exploring Age Bias in the Value Systems of Large Language Models [26.485974783643464]
特に米国人口と比較して,若年層に対するLLM(Large Language Models)値の一般的な傾向を見出した。
一般的な傾きは観察できるが、若いグループに対するこの傾きは、異なる値のカテゴリで異なることが判明した。
論文 参考訳(メタデータ) (2024-04-12T18:36:20Z) - ROBBIE: Robust Bias Evaluation of Large Generative Language Models [27.864027322486375]
異なるプロンプトベースのデータセットを使用して、複数のテキストドメインと人口統計軸にわたる社会的バイアスを測定することができる。
我々は,12の人口動態軸と5のジェネレーションLLMの家系の6つの異なるプロンプトベースのバイアスと毒性の指標を比較した。
3つのバイアス/毒性の緩和技術が、我々の一連の測定においていかにうまく機能するかを包括的に研究する。
論文 参考訳(メタデータ) (2023-11-29T23:03:04Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
本稿では, 年齢や美しさなど, 研究の少ない, 連続的な, 次元に沿ったバイアスについて検討する。
実験心理学において, LLMは, 特定の社会集団に対して, 肯定的, 否定的感情の偏見を広く抱いているか, あるいは「美しいものは良い」バイアスと類似しているかを問う。
論文 参考訳(メタデータ) (2023-09-16T07:07:04Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - On GANs perpetuating biases for face verification [75.99046162669997]
GANなどの生成モデルから生成されたデータにはバイアスや公平性の問題が伴う。
特に、FFHQデータセットでトレーニングされたGANは、20~29歳の年齢層で白人の顔を生成するバイアスを示している。
論文 参考訳(メタデータ) (2022-08-27T17:47:09Z) - Adaptive Mean-Residue Loss for Robust Facial Age Estimation [7.667560350473354]
本稿では,分布学習による顔年齢推定のための損失関数を提案する。
FG-NETとCLAP2016のデータセットでの実験結果により、提案された損失の有効性が検証された。
論文 参考訳(メタデータ) (2022-03-31T16:28:34Z) - Fairness-aware Class Imbalanced Learning [57.45784950421179]
つぶやきの感情と職業分類のロングテール学習手法を評価する。
フェアネスを強制する手法により、マージンロスに基づくアプローチを拡張します。
論文 参考訳(メタデータ) (2021-09-21T22:16:30Z) - Balancing Biases and Preserving Privacy on Balanced Faces in the Wild [50.915684171879036]
現在の顔認識(FR)モデルには、人口統計バイアスが存在する。
さまざまな民族と性別のサブグループにまたがる偏見を測定するために、我々のバランス・フェイススをWildデータセットに導入します。
真偽と偽のサンプルペアを区別するために1点のスコアしきい値に依存すると、最適以下の結果が得られます。
本稿では,最先端ニューラルネットワークから抽出した顔特徴を用いたドメイン適応学習手法を提案する。
論文 参考訳(メタデータ) (2021-03-16T15:05:49Z) - Enhancing Facial Data Diversity with Style-based Face Aging [59.984134070735934]
特に、顔データセットは、通常、性別、年齢、人種などの属性の観点からバイアスされる。
本稿では, 細粒度の老化パターンをキャプチャするデータ拡張のための, 生成スタイルに基づく新しいアーキテクチャを提案する。
提案手法は, 年齢移動のための最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-06T21:53:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。