論文の概要: `Eyes of a Hawk and Ears of a Fox': Part Prototype Network for Generalized Zero-Shot Learning
- arxiv url: http://arxiv.org/abs/2404.08761v1
- Date: Fri, 12 Apr 2024 18:37:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 18:52:17.685914
- Title: `Eyes of a Hawk and Ears of a Fox': Part Prototype Network for Generalized Zero-Shot Learning
- Title(参考訳): アイス・オブ・ザ・ホーク(Eyes of a Hawk and Ears of a Fox)-Part Prototype Network for Generalized Zero-Shot Learning (特集 ザ・ザ・ザ・ザ・ザ・フューチャーズ)
- Authors: Joshua Feinglass, Jayaraman J. Thiagarajan, Rushil Anirudh, T. S. Jayram, Yezhou Yang,
- Abstract要約: 一般化ゼロショット学習(GZSL)における現在のアプローチは、画像全体に対する単一のクラス属性ベクトル表現のみを考慮したベースモデル上に構築されている。
属性情報に敏感なVINVL(Pre-trained Vision-Language Detector)を用いて,地域特性を効率的に取得する。
学習された関数は、その領域の特徴を、クラス部分プロトタイプを構築するために使われる地域固有の属性アテンションにマップする。
- 参考スコア(独自算出の注目度): 47.1040786932317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current approaches in Generalized Zero-Shot Learning (GZSL) are built upon base models which consider only a single class attribute vector representation over the entire image. This is an oversimplification of the process of novel category recognition, where different regions of the image may have properties from different seen classes and thus have different predominant attributes. With this in mind, we take a fundamentally different approach: a pre-trained Vision-Language detector (VINVL) sensitive to attribute information is employed to efficiently obtain region features. A learned function maps the region features to region-specific attribute attention used to construct class part prototypes. We conduct experiments on a popular GZSL benchmark consisting of the CUB, SUN, and AWA2 datasets where our proposed Part Prototype Network (PPN) achieves promising results when compared with other popular base models. Corresponding ablation studies and analysis show that our approach is highly practical and has a distinct advantage over global attribute attention when localized proposals are available.
- Abstract(参考訳): 一般化ゼロショット学習(GZSL)における現在のアプローチは、画像全体に対する単一のクラス属性ベクトル表現のみを考慮したベースモデル上に構築されている。
これは新しいカテゴリ認識のプロセスの単純化であり、画像の異なる領域は異なるクラスの特性を持ち、したがって異なる属性を持つ。
属性情報に敏感なVINVL(Pre-trained Vision-Language Detector)を用いて,地域特性を効率的に取得する。
学習された関数は、その領域の特徴を、クラス部分プロトタイプを構築するために使われる地域固有の属性アテンションにマップする。
提案するPart Prototype Network (PPN) は,CUB, SUN, AWA2データセットからなる一般的なGZSLベンチマークにおいて,他の人気ベースモデルと比較して有望な結果が得られることを示す。
アブレーション研究と分析は,本手法が極めて実用的であり,局所的提案が利用可能である場合,グローバル属性の注目に対して明確な優位性があることを示唆している。
関連論文リスト
- GBE-MLZSL: A Group Bi-Enhancement Framework for Multi-Label Zero-Shot
Learning [24.075034737719776]
マルチラベルシナリオ(MLZSL)におけるゼロショット学習の課題について検討する。
本稿では、GBE-MLZSLと呼ばれるMLZSLのための新しい効果的なグループバイエンハンスメントフレームワークを提案し、それらの特性を十分に活用し、より正確で堅牢なビジュアル・セマンティック・プロジェクションを実現する。
大規模なMLZSLベンチマークデータセットであるNAS-WIDEとOpen-Images-v4の実験では、提案したGBE-MLZSLが、最先端の手法よりも大きなマージンを持つことを示した。
論文 参考訳(メタデータ) (2023-09-02T12:07:21Z) - Attribute Prototype Network for Any-Shot Learning [113.50220968583353]
属性ローカライズ機能を統合した画像表現は、任意のショット、すなわちゼロショットと少数ショットのイメージ分類タスクに有用である、と我々は主張する。
クラスレベルの属性のみを用いてグローバルな特徴とローカルな特徴を共同で学習する新しい表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-04T02:25:40Z) - Region Semantically Aligned Network for Zero-Shot Learning [18.18665627472823]
本研究では、未確認クラスの局所的特徴をそれらの意味属性にマッピングする地域意味ネットワーク(RSAN)を提案する。
出力の特定の領域から各属性を取得し、これらの属性を認識に活用する。
いくつかの標準ZSLデータセットの実験では、提案したRSAN法の利点が示され、最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-10-14T03:23:40Z) - Discriminative Region-based Multi-Label Zero-Shot Learning [145.0952336375342]
マルチラベルゼロショット学習(Multi-label zero-shot Learning、ZSL)は、標準のシングルラベルZSLのより現実的な対位法である。
本稿では,地域別識別可能性保存型ZSLに対する代替アプローチを提案する。
論文 参考訳(メタデータ) (2021-08-20T17:56:47Z) - Goal-Oriented Gaze Estimation for Zero-Shot Learning [62.52340838817908]
識別的属性の局在性を改善するために, 目標指向視線推定モジュール(GEM)を提案する。
属性記述に導かれた新しい物体を認識する視覚注意領域を得るために,実際の人間の視線位置を予測することを目的とする。
この研究は、高レベルのコンピュータビジョンタスクに人間の視線データセットと自動視線推定アルゴリズムを集めることの有望な利点を示しています。
論文 参考訳(メタデータ) (2021-03-05T02:14:57Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Attribute Prototype Network for Zero-Shot Learning [113.50220968583353]
差別的グローバルな特徴と局所的な特徴を共同で学習するゼロショット表現学習フレームワークを提案する。
本モデルでは,画像中の属性の視覚的証拠を指摘し,画像表現の属性ローカライゼーション能力の向上を確認した。
論文 参考訳(メタデータ) (2020-08-19T06:46:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。