XVertNet: Unsupervised Contrast Enhancement of Vertebral Structures with Dynamic Self-Tuning Guidance and Multi-Stage Analysis
- URL: http://arxiv.org/abs/2306.03983v2
- Date: Tue, 14 Jan 2025 01:10:52 GMT
- Title: XVertNet: Unsupervised Contrast Enhancement of Vertebral Structures with Dynamic Self-Tuning Guidance and Multi-Stage Analysis
- Authors: Ella Eidlin, Assaf Hoogi, Hila Rozen, Mohammad Badarne, Nathan S. Netanyahu,
- Abstract summary: Chest X-rays remain the primary diagnostic tool in emergency medicine, yet their limited ability to capture fine anatomical details can result in missed or delayed diagnoses.
We introduce XVertNet, a novel deep-learning framework designed to enhance vertebral structure visualization in X-ray images significantly.
- Score: 1.3584858315758948
- License:
- Abstract: Chest X-rays remain the primary diagnostic tool in emergency medicine, yet their limited ability to capture fine anatomical details can result in missed or delayed diagnoses. To address this, we introduce XVertNet, a novel deep-learning framework designed to enhance vertebral structure visualization in X-ray images significantly. Our framework introduces two key innovations: (1) An unsupervised learning architecture that eliminates reliance on manually labeled training data a persistent bottleneck in medical imaging, and (2) a dynamic self-tuned internal guidance mechanism featuring an adaptive feedback loop for real-time image optimization. Extensive validation across four major public datasets revealed that XVertNet outperforms state-of-the-art enhancement methods, as demonstrated by improvements in entropy scores, Tenengrad criterion values, the local phase coherence sharpness index (LPC-SI), and thetone mapped image quality index (TMQI). Furthermore, clinical validation conducted with two board-certified radiologists confirmed that the enhanced images enabled more sensitive detection of subtle vertebral fractures and degenerative changes. The unsupervised nature of XVertNet facilitates immediate clinical deployment without requiring additional training overhead. This innovation represents a transformative advancement in emergency radiology, providing a scalable and time-efficient solution to enhance diagnostic accuracy in high-pressure clinical environments.
Related papers
- Trustworthy image-to-image translation: evaluating uncertainty calibration in unpaired training scenarios [0.0]
Mammographic screening is an effective method for detecting breast cancer, facilitating early diagnosis.
Deep neural networks have been shown effective in some studies, but their tendency to overfit leaves considerable risk for poor generalisation and misdiagnosis.
Data augmentation schemes based on unpaired neural style transfer models have been proposed that improve generalisability.
We evaluate their performance when trained on image patches parsed from three open access mammography datasets and one non-medical image dataset.
arXiv Detail & Related papers (2025-01-29T11:09:50Z) - Dual-Domain CLIP-Assisted Residual Optimization Perception Model for Metal Artifact Reduction [9.028901322902913]
Metal artifacts in computed tomography (CT) imaging pose significant challenges to accurate clinical diagnosis.
Deep learning-based approaches, particularly generative models, have been proposed for metal artifact reduction (MAR)
arXiv Detail & Related papers (2024-08-14T02:37:26Z) - Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
We propose a two-stage deep learning framework for real-time guidewire segmentation and tracking.
In the first stage, a Yolov5 detector is trained, using the original X-ray images as well as synthetic ones, to output the bounding boxes of possible target guidewires.
In the second stage, a novel and efficient network is proposed to segment the guidewire in each detected bounding box.
arXiv Detail & Related papers (2024-04-12T20:39:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - BarlowTwins-CXR : Enhancing Chest X-Ray abnormality localization in
heterogeneous data with cross-domain self-supervised learning [1.7479385556004874]
"BarlwoTwins-CXR" is a self-supervised learning strategy for autonomic abnormality localization of chest X-ray image analysis.
The approach achieved a 3% increase in mAP50 accuracy compared to traditional ImageNet pre-trained models.
arXiv Detail & Related papers (2024-02-09T16:10:13Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Advancing diagnostic performance and clinical usability of neural
networks via adversarial training and dual batch normalization [2.1699022621790736]
We let six radiologists rate the interpretability of saliency maps in datasets of X-rays, computed tomography, and magnetic resonance imaging scans.
We found that the accuracy of adversarially trained models was equal to standard models when sufficiently large datasets and dual batch norm training were used.
arXiv Detail & Related papers (2020-11-25T20:41:01Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.