Auxiliary Input in Training: Incorporating Catheter Features into Deep Learning Models for ECG-Free Dynamic Coronary Roadmapping
- URL: http://arxiv.org/abs/2408.15947v1
- Date: Wed, 28 Aug 2024 17:05:38 GMT
- Title: Auxiliary Input in Training: Incorporating Catheter Features into Deep Learning Models for ECG-Free Dynamic Coronary Roadmapping
- Authors: Yikang Liu, Lin Zhao, Eric Z. Chen, Xiao Chen, Terrence Chen, Shanhui Sun,
- Abstract summary: Dynamic coronary roadmapping is a technology that overlays the vessel maps (the "roadmap") extracted from an offline image sequence of X-ray angiography onto a live stream of X-ray fluoroscopy in real-time.
It aims to offer navigational guidance for interventional surgeries without the need for repeated contrast agent injections, thereby reducing the risks associated with radiation exposure and kidney failure.
- Score: 17.461510586128874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic coronary roadmapping is a technology that overlays the vessel maps (the "roadmap") extracted from an offline image sequence of X-ray angiography onto a live stream of X-ray fluoroscopy in real-time. It aims to offer navigational guidance for interventional surgeries without the need for repeated contrast agent injections, thereby reducing the risks associated with radiation exposure and kidney failure. The precision of the roadmaps is contingent upon the accurate alignment of angiographic and fluoroscopic images based on their cardiac phases, as well as precise catheter tip tracking. The former ensures the selection of a roadmap that closely matches the vessel shape in the current frame, while the latter uses catheter tips as reference points to adjust for translational motion between the roadmap and the present vessel tree. Training deep learning models for both tasks is challenging and underexplored. However, incorporating catheter features into the models could offer substantial benefits, given humans heavily rely on catheters to complete the tasks. To this end, we introduce a simple but effective method, auxiliary input in training (AIT), and demonstrate that it enhances model performance across both tasks, outperforming baseline methods in knowledge incorporation and transfer learning.
Related papers
- Real-time guidewire tracking and segmentation in intraoperative x-ray [52.51797358201872]
We propose a two-stage deep learning framework for real-time guidewire segmentation and tracking.
In the first stage, a Yolov5 detector is trained, using the original X-ray images as well as synthetic ones, to output the bounding boxes of possible target guidewires.
In the second stage, a novel and efficient network is proposed to segment the guidewire in each detected bounding box.
arXiv Detail & Related papers (2024-04-12T20:39:19Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Spatiotemporal Disentanglement of Arteriovenous Malformations in Digital
Subtraction Angiography [37.44819725897024]
The presented method aims to enhance Digital Subtraction Angiography (DSA) image series by highlighting critical information via automatic classification of vessels.
The method was tested on clinical DSA images series and demonstrated efficient differentiation between arteries and veins.
arXiv Detail & Related papers (2024-02-15T00:29:53Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - ConTrack: Contextual Transformer for Device Tracking in X-ray [13.788670026481324]
ConTrack is a transformer-based network that uses both spatial and temporal contextual information for accurate device detection and tracking.
Our method achieves 45% or higher accuracy in detection and tracking when compared to state-of-the-art tracking models.
arXiv Detail & Related papers (2023-07-14T14:20:09Z) - Live image-based neurosurgical guidance and roadmap generation using
unsupervised embedding [53.992124594124896]
We present a method for live image-only guidance leveraging a large data set of annotated neurosurgical videos.
A generated roadmap encodes the common anatomical paths taken in surgeries in the training set.
We trained and evaluated the proposed method with a data set of 166 transsphenoidal adenomectomy procedures.
arXiv Detail & Related papers (2023-03-31T12:52:24Z) - Robust Landmark-based Stent Tracking in X-ray Fluoroscopy [10.917460255497227]
We propose an end-to-end deep learning framework for single stent tracking.
It consists of three hierarchical modules: U-Net based landmark detection, ResNet based stent proposal and feature extraction.
Experiments show that our method performs significantly better in detection compared with the state-of-the-art point-based tracking models.
arXiv Detail & Related papers (2022-07-20T14:20:03Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z) - Dynamic Coronary Roadmapping via Catheter Tip Tracking in X-ray
Fluoroscopy with Deep Learning Based Bayesian Filtering [4.040013871160853]
Percutaneous coronary intervention ( PCI) is typically performed with image guidance using X-ray angiograms in which coronary arteries are opacified with X-ray opaque contrast agents.
This paper reports on the development of a novel dynamic coronary roadmapping approach for improving visual feedback and reducing contrast use during PCI.
In particular, for accurate and robust tracking of the catheter tip, we proposed a new deep learning based Bayesian filtering method that integrates the detection outcome of a convolutional neural network and the motion estimation between frames using a particle filtering framework.
arXiv Detail & Related papers (2020-01-11T22:08:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.