Enhancing IoT Malware Detection through Adaptive Model Parallelism and Resource Optimization
- URL: http://arxiv.org/abs/2404.08808v1
- Date: Fri, 12 Apr 2024 20:51:25 GMT
- Title: Enhancing IoT Malware Detection through Adaptive Model Parallelism and Resource Optimization
- Authors: Sreenitha Kasarapu, Sanket Shukla, Sai Manoj Pudukotai Dinakarrao,
- Abstract summary: This study introduces a novel approach to malware detection tailored for IoT devices.
Based on resource availability, ongoing workload, and communication costs, the malware detection task is dynamically allocated either on-device or offloaded to neighboring IoT nodes.
Experimental results demonstrate that this proposed technique achieves a significant speedup of 9.8 x compared to on-device inference.
- Score: 0.6856683556201506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread integration of IoT devices has greatly improved connectivity and computational capabilities, facilitating seamless communication across networks. Despite their global deployment, IoT devices are frequently targeted for security breaches due to inherent vulnerabilities. Among these threats, malware poses a significant risk to IoT devices. The lack of built-in security features and limited resources present challenges for implementing effective malware detection techniques on IoT devices. Moreover, existing methods assume access to all device resources for malware detection, which is often not feasible for IoT devices deployed in critical real-world scenarios. To overcome this challenge, this study introduces a novel approach to malware detection tailored for IoT devices, leveraging resource and workload awareness inspired by model parallelism. Initially, the device assesses available resources for malware detection using a lightweight regression model. Based on resource availability, ongoing workload, and communication costs, the malware detection task is dynamically allocated either on-device or offloaded to neighboring IoT nodes with sufficient resources. To uphold data integrity and user privacy, instead of transferring the entire malware detection task, the classifier is divided and distributed across multiple nodes, then integrated at the parent node for detection. Experimental results demonstrate that this proposed technique achieves a significant speedup of 9.8 x compared to on-device inference, while maintaining a high malware detection accuracy of 96.7%.
Related papers
- Optimizing Malware Detection in IoT Networks: Leveraging Resource-Aware Distributed Computing for Enhanced Security [0.6856683556201506]
Malicious applications, commonly known as malware, pose a significant threat to IoT devices and networks.
We present a novel resource- and workload-aware malware detection framework integrated with distributed computing for IoT networks.
arXiv Detail & Related papers (2024-04-12T21:11:29Z) - Real-time Threat Detection Strategies for Resource-constrained Devices [1.4815508281465273]
We present an end-to-end process designed to effectively address DNS-tunneling attacks in a router.
We demonstrate that utilizing stateless features for training the ML model, along with features chosen to be independent of the network configuration, leads to highly accurate results.
The deployment of this carefully crafted model, optimized for embedded devices across diverse environments, resulted in high DNS-tunneling attack detection with minimal latency.
arXiv Detail & Related papers (2024-03-22T10:02:54Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - Malware Classification using Deep Neural Networks: Performance
Evaluation and Applications in Edge Devices [0.0]
Multiple Deep Neural Networks (DNNs) can be designed to detect and classify malware binaries.
The feasibility of deploying these DNN models on edge devices to enable real-time classification, particularly in resource-constrained scenarios proves to be integral to large IoT systems.
This study contributes to advancing malware detection techniques and emphasizes the significance of integrating cybersecurity measures for the early detection of malware.
arXiv Detail & Related papers (2023-08-21T16:34:46Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
Hardware-based malware detection approaches leverage hardware performance counters and machine learning prowess.
We meticulously analyze the approach, unraveling the most common methods, algorithms, tools, and datasets that shape its contours.
The discussion extends to crafting mixed hardware and software approaches for collaborative efficacy, essential enhancements in hardware monitoring units, and a better understanding of the correlation between hardware events and malware applications.
arXiv Detail & Related papers (2023-03-22T13:00:41Z) - SETTI: A Self-supervised Adversarial Malware Detection Architecture in
an IoT Environment [20.586904296213007]
We propose an adversarial self-supervised architecture for detecting malware in Internet of Things networks, SETTI.
In the SETTI architecture, we design three self-supervised attack techniques, namely Self-MDS, GSelf-MDS and ASelf-MDS.
To validate the attack and defence algorithms, we conduct experiments on two recent IoT datasets: IoT23 and NBIoT.
arXiv Detail & Related papers (2022-04-16T10:10:59Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Automated Identification of Vulnerable Devices in Networks using Traffic
Data and Deep Learning [30.536369182792516]
Device-type identification combined with data from vulnerability databases can pinpoint vulnerable IoT devices in a network.
We present and evaluate two deep learning approaches to the reliable IoT device-type identification.
arXiv Detail & Related papers (2021-02-16T14:49:34Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
Internet of things (IoT) devices tend to have many vulnerabilities which can be exploited by an attacker.
Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner.
We present a distributed IoT simulation platform, which consists of 48 Raspberry Pis.
arXiv Detail & Related papers (2020-06-18T14:50:08Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers.
The widely adopted bring your own device (BYOD) policy which allows an employee to bring any IoT device into the workplace and attach it to an organization's network also increases the risk of attacks.
In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network.
arXiv Detail & Related papers (2020-02-25T12:24:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.