CryptoDNA: A Machine Learning Paradigm for DDoS Detection in Healthcare IoT, Inspired by crypto jacking prevention Models
- URL: http://arxiv.org/abs/2501.18549v1
- Date: Thu, 30 Jan 2025 18:22:16 GMT
- Title: CryptoDNA: A Machine Learning Paradigm for DDoS Detection in Healthcare IoT, Inspired by crypto jacking prevention Models
- Authors: Zag ElSayed, Ahmed Abdelgawad, Nelly Elsayed,
- Abstract summary: The rapid integration of the Internet of Things (IoT) and Internet of Medical (IoM) devices in the healthcare industry has markedly improved patient care and hospital operations.<n>DDoS attacks present significant dangers, jeopardizing operational stability and patient safety.<n>This study introduces CryptoDNA, an innovative machine learning detection framework influenced by cryptojacking detection methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid integration of the Internet of Things (IoT) and Internet of Medical (IoM) devices in the healthcare industry has markedly improved patient care and hospital operations but has concurrently brought substantial risks. Distributed Denial-of-Service (DDoS) attacks present significant dangers, jeopardizing operational stability and patient safety. This study introduces CryptoDNA, an innovative machine learning detection framework influenced by cryptojacking detection methods, designed to identify and alleviate DDoS attacks in healthcare IoT settings. The proposed approach relies on behavioral analytics, including atypical resource usage and network activity patterns. Key features derived from cryptojacking-inspired methodologies include entropy-based analysis of traffic, time-series monitoring of device performance, and dynamic anomaly detection. A lightweight architecture ensures inter-compatibility with resource-constrained IoT devices while maintaining high detection accuracy. The proposed architecture and model were tested in real-world and synthetic datasets to demonstrate the model's superior performance, achieving over 96% accuracy with minimal computational overhead. Comparative analysis reveals its resilience against emerging attack vectors and scalability across diverse device ecosystems. By bridging principles from cryptojacking and DDoS detection, CryptoDNA offers a robust, innovative solution to fortify the healthcare IoT landscape against evolving cyber threats and highlights the potential of interdisciplinary approaches in adaptive cybersecurity defense mechanisms for critical healthcare infrastructures.
Related papers
- Application of Deep Reinforcement Learning for Intrusion Detection in Internet of Things: A Systematic Review [0.0]
The Internet of Things (IoT) has significantly expanded the digital landscape, interconnecting an unprecedented array of devices.
Traditional Intrusion Detection Systems (IDS) struggle to adapt to IoT networks' dynamic and evolving nature and threat patterns.
This systematic review examines the application of Deep Reinforcement Learning (DRL) to enhance IDS in IoT settings.
arXiv Detail & Related papers (2025-04-20T00:55:58Z) - MDHP-Net: Detecting an Emerging Time-exciting Threat in IVN [42.74889568823579]
We identify a new time-exciting threat model against in-vehicle network (IVN)
These attacks inject malicious messages that exhibit a time-exciting effect, gradually manipulating network traffic to disrupt vehicle operations and compromise safety-critical functions.
To detect time-exciting threat, we introduce MDHP-Net, leveraging Multi-Dimentional Hawkes Process (MDHP) and temporal and message-wise feature extracting structures.
arXiv Detail & Related papers (2025-04-16T08:41:24Z) - Intrusion Detection in IoT Networks Using Hyperdimensional Computing: A Case Study on the NSL-KDD Dataset [0.2399911126932527]
The rapid expansion of Internet of Things (IoT) networks has introduced new security challenges.
In this study, a detection framework based on hyperdimensional computing (HDC) is proposed to identify and classify network intrusions.
The proposed approach effectively distinguishes various attack categories such as DoS, probe, R2L, and U2R, while accurately identifying normal traffic patterns.
arXiv Detail & Related papers (2025-03-04T22:33:37Z) - Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
Traditional centralized security methods often struggle to balance privacy preservation and real-time threat detection in IoT networks.
This study proposes a Federated Learning-Driven Cybersecurity Framework designed specifically for IoT environments.
Secure aggregation of locally trained models is achieved using homomorphic encryption, allowing collaborative learning without exposing sensitive information.
arXiv Detail & Related papers (2025-02-14T23:11:51Z) - MDHP-Net: Detecting Injection Attacks on In-vehicle Network using Multi-Dimensional Hawkes Process and Temporal Model [44.356505647053716]
In this paper, we consider a specific type of cyberattack known as the injection attack.
These injection attacks have effect over time, gradually manipulating network traffic and disrupting the vehicle's normal functioning.
We propose an injection attack detector, MDHP-Net, which integrates optimal MDHP parameters with MDHP-LSTM blocks to enhance temporal feature extraction.
arXiv Detail & Related papers (2024-11-15T15:05:01Z) - L-SFAN: Lightweight Spatially-focused Attention Network for Pain Behavior Detection [44.016805074560295]
Chronic Low Back Pain (CLBP) afflicts millions globally, significantly impacting individuals' well-being and imposing economic burdens on healthcare systems.
While artificial intelligence (AI) and deep learning offer promising avenues for analyzing pain-related behaviors to improve rehabilitation strategies, current models, including convolutional neural networks (CNNs), have limitations.
We introduce hbox EmoL-SFAN, a lightweight CNN architecture incorporating 2D filters designed to capture the spatial-temporal interplay of data from motion capture and surface electromyography sensors.
arXiv Detail & Related papers (2024-06-07T12:01:37Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices make it challenging to deploy conventional computing-based IDSs.
We propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset.
arXiv Detail & Related papers (2024-06-04T20:36:21Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - IoT Botnet Detection Using an Economic Deep Learning Model [0.0]
This paper proposes an economic deep learning-based model for detecting IoT botnet attacks along with different types of attacks.
The proposed model achieved higher accuracy than the state-of-the-art detection models using a smaller implementation budget and accelerating the training and detecting processes.
arXiv Detail & Related papers (2023-02-03T21:41:17Z) - Intrusion Detection using Network Traffic Profiling and Machine Learning
for IoT [2.309914459672557]
A single compromised device can have an impact on the whole network and lead to major security and physical damages.
This paper explores the potential of using network profiling and machine learning to secure IoT against cyber-attacks.
arXiv Detail & Related papers (2021-09-06T15:30:10Z) - Automated Identification of Vulnerable Devices in Networks using Traffic
Data and Deep Learning [30.536369182792516]
Device-type identification combined with data from vulnerability databases can pinpoint vulnerable IoT devices in a network.
We present and evaluate two deep learning approaches to the reliable IoT device-type identification.
arXiv Detail & Related papers (2021-02-16T14:49:34Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
Internet of things (IoT) devices tend to have many vulnerabilities which can be exploited by an attacker.
Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner.
We present a distributed IoT simulation platform, which consists of 48 Raspberry Pis.
arXiv Detail & Related papers (2020-06-18T14:50:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.