Multiply-Robust Causal Change Attribution
- URL: http://arxiv.org/abs/2404.08839v4
- Date: Thu, 5 Sep 2024 18:36:34 GMT
- Title: Multiply-Robust Causal Change Attribution
- Authors: Victor Quintas-Martinez, Mohammad Taha Bahadori, Eduardo Santiago, Jeff Mu, Dominik Janzing, David Heckerman,
- Abstract summary: We develop a new estimation strategy that combines regression and re-weighting methods to quantify the contribution of each causal mechanism.
Our method demonstrates excellent performance in Monte Carlo simulations, and we show its usefulness in an empirical application.
- Score: 15.501106533308798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Comparing two samples of data, we observe a change in the distribution of an outcome variable. In the presence of multiple explanatory variables, how much of the change can be explained by each possible cause? We develop a new estimation strategy that, given a causal model, combines regression and re-weighting methods to quantify the contribution of each causal mechanism. Our proposed methodology is multiply robust, meaning that it still recovers the target parameter under partial misspecification. We prove that our estimator is consistent and asymptotically normal. Moreover, it can be incorporated into existing frameworks for causal attribution, such as Shapley values, which will inherit the consistency and large-sample distribution properties. Our method demonstrates excellent performance in Monte Carlo simulations, and we show its usefulness in an empirical application. Our method is implemented as part of the Python library DoWhy (arXiv:2011.04216, arXiv:2206.06821).
Related papers
- Theoretical Evaluation of Asymmetric Shapley Values for Root-Cause
Analysis [0.0]
Asymmetric Shapley Values (ASV) is a variant of the popular SHAP additive local explanation method.
We show how local contributions correspond to global contributions of variance reduction.
We identify generalized additive models (GAM) as a restricted class for which ASV exhibits desirable properties.
arXiv Detail & Related papers (2023-10-15T21:40:16Z) - A Heavy-Tailed Algebra for Probabilistic Programming [53.32246823168763]
We propose a systematic approach for analyzing the tails of random variables.
We show how this approach can be used during the static analysis (before drawing samples) pass of a probabilistic programming language compiler.
Our empirical results confirm that inference algorithms that leverage our heavy-tailed algebra attain superior performance across a number of density modeling and variational inference tasks.
arXiv Detail & Related papers (2023-06-15T16:37:36Z) - Monte Carlo inference for semiparametric Bayesian regression [5.488491124945426]
This paper introduces a simple, general, and efficient strategy for joint posterior inference of an unknown transformation and all regression model parameters.
It delivers (1) joint posterior consistency under general conditions, including multiple model misspecifications, and (2) efficient Monte Carlo (not Markov chain Monte Carlo) inference for the transformation and all parameters for important special cases.
arXiv Detail & Related papers (2023-06-08T18:42:42Z) - On the Strong Correlation Between Model Invariance and Generalization [54.812786542023325]
Generalization captures a model's ability to classify unseen data.
Invariance measures consistency of model predictions on transformations of the data.
From a dataset-centric view, we find a certain model's accuracy and invariance linearly correlated on different test sets.
arXiv Detail & Related papers (2022-07-14T17:08:25Z) - Distributional Gradient Boosting Machines [77.34726150561087]
Our framework is based on XGBoost and LightGBM.
We show that our framework achieves state-of-the-art forecast accuracy.
arXiv Detail & Related papers (2022-04-02T06:32:19Z) - Comparing two samples through stochastic dominance: a graphical approach [2.867517731896504]
Non-deterministic measurements are common in real-world scenarios.
We propose an alternative framework to visually compare two samples according to their estimated cumulative distribution functions.
arXiv Detail & Related papers (2022-03-15T13:37:03Z) - Calibrated Multiple-Output Quantile Regression with Representation
Learning [12.826754199680472]
We use a deep generative model to learn a representation of a response with a unimodal distribution.
We then transform the solution to the original space of the response.
Experiments conducted on both real and synthetic data show that our method constructs regions that are significantly smaller.
arXiv Detail & Related papers (2021-10-02T14:50:15Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.