論文の概要: Countering Mainstream Bias via End-to-End Adaptive Local Learning
- arxiv url: http://arxiv.org/abs/2404.08887v1
- Date: Sat, 13 Apr 2024 03:17:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 18:13:13.353906
- Title: Countering Mainstream Bias via End-to-End Adaptive Local Learning
- Title(参考訳): エンド・ツー・エンド適応型ローカル学習による主流バイアスのカウンセリング
- Authors: Jinhao Pan, Ziwei Zhu, Jianling Wang, Allen Lin, James Caverlee,
- Abstract要約: CF(Collaborative Filtering)ベースのレコメンデーションは、主流のバイアスに悩まされる。
主流ユーザとニッチユーザの両方に高品質なレコメンデーションを提供するために,新しいエンドツーエンド適応型ローカル学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 17.810760161534247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative filtering (CF) based recommendations suffer from mainstream bias -- where mainstream users are favored over niche users, leading to poor recommendation quality for many long-tail users. In this paper, we identify two root causes of this mainstream bias: (i) discrepancy modeling, whereby CF algorithms focus on modeling mainstream users while neglecting niche users with unique preferences; and (ii) unsynchronized learning, where niche users require more training epochs than mainstream users to reach peak performance. Targeting these causes, we propose a novel end-To-end Adaptive Local Learning (TALL) framework to provide high-quality recommendations to both mainstream and niche users. TALL uses a loss-driven Mixture-of-Experts module to adaptively ensemble experts to provide customized local models for different users. Further, it contains an adaptive weight module to synchronize the learning paces of different users by dynamically adjusting weights in the loss. Extensive experiments demonstrate the state-of-the-art performance of the proposed model. Code and data are provided at \url{https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-}
- Abstract(参考訳): コラボレーションフィルタリング(CF)ベースのレコメンデーションは、主流のユーザがニッチなユーザよりも好まれる主流のバイアスに悩まされ、多くのロングテールユーザにとって推奨品質が低下する。
本稿では,この主流バイアスの根本原因を2つ同定する。
(i)独特な好みを持つニッチなユーザを無視しながら、CFアルゴリズムが主流のユーザをモデリングすることに焦点を当てた不一致モデリング。
ニッチなユーザにとって,ピーク時のパフォーマンスを達成するためには,主流ユーザよりも多くのトレーニングエポックが必要なのだ。
これらの原因をターゲットとして,主流ユーザとニッチユーザの両方に高品質なレコメンデーションを提供するために,新しいエンドツーエンド適応型ローカル学習(TALL)フレームワークを提案する。
TALLは、損失駆動のMixture-of-Expertsモジュールを使用して、専門家を適応的にアンサンブルし、異なるユーザ向けにカスタマイズされたローカルモデルを提供する。
さらに、損失の重みを動的に調整することにより、異なるユーザの学習ペースを同期させる適応重みモジュールを含む。
大規模な実験により,提案モデルの最先端性能が実証された。
コードとデータは \url{https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-} で提供される。
関連論文リスト
- Federated Skewed Label Learning with Logits Fusion [23.062650578266837]
フェデレートラーニング(FL)は、ローカルデータを送信することなく、複数のクライアント間で共有モデルを協調的にトレーニングすることを目的としている。
本稿では,ロジットの校正により局所モデル間の最適化バイアスを補正するFedBalanceを提案する。
提案手法は最先端手法に比べて平均精度が13%高い。
論文 参考訳(メタデータ) (2023-11-14T14:37:33Z) - Causal Structure Representation Learning of Confounders in Latent Space
for Recommendation [6.839357057621987]
ユーザの過去のフィードバックからユーザの好みを推測することは,レコメンデーションシステムにおいて重要な問題である。
我々は、共同創設者の影響を考慮し、潜在分野におけるユーザー嗜好から引き離し、相互依存をモデル化するために因果グラフを用いる。
論文 参考訳(メタデータ) (2023-11-02T08:46:07Z) - Separating and Learning Latent Confounders to Enhancing User Preferences Modeling [6.0853798070913845]
我々は、推薦のための新しいフレームワーク、SLFR(Separating and Learning Latent Confounders for Recommendation)を提案する。
SLFRは、未測定の共同設立者の表現を取得し、ユーザ嗜好と未測定の共同設立者を遠ざけ、反実的なフィードバックを識別する。
5つの実世界のデータセットで実験を行い、本手法の利点を検証した。
論文 参考訳(メタデータ) (2023-11-02T08:42:50Z) - ClusterSeq: Enhancing Sequential Recommender Systems with Clustering
based Meta-Learning [3.168790535780547]
ClusterSeqはメタラーニングクラスタリングに基づくシーケンスレコメンダシステムである。
ユーザシーケンスの動的情報を利用して、サイド情報がない場合でもアイテム予測精度を高める。
提案手法は平均相反ランク(MRR)において16~39%の大幅な改善を実現する。
論文 参考訳(メタデータ) (2023-07-25T18:53:24Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
タイルユーザーは、共同トレーニング後のヘッドユーザーよりも大幅に品質の低いレコメンデーションに悩まされる。
テールユーザーで個別に訓練されたモデルは、限られたデータのために依然として劣った結果が得られる。
本稿では,テールユーザの推薦性能を大幅に向上させる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T02:50:19Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
メタラーニングをベースとした多元的ドメインを用いた多元的推論拡張フレームワークを提案する。
我々は、疎結合の場合の過度な適合を扱うために、新しい関心領域において多様な評価を生成する。
これらの評価は、選好メタラーナーを学ぶためのメタトレーニング手順に導入され、優れた一般化能力が得られる。
論文 参考訳(メタデータ) (2022-04-01T10:10:50Z) - Linear Speedup in Personalized Collaborative Learning [69.45124829480106]
フェデレート学習におけるパーソナライゼーションは、モデルのバイアスをトレーディングすることで、モデルの精度を向上させることができる。
ユーザの目的の最適化として、パーソナライズされた協調学習問題を定式化する。
分散の低減のためにバイアスを最適にトレードオフできる条件について検討する。
論文 参考訳(メタデータ) (2021-11-10T22:12:52Z) - Learning User Preferences in Non-Stationary Environments [42.785926822853746]
オンラインノンステーショナリーレコメンデーションシステムのための新しいモデルを紹介します。
好みが変化しない場合でも,我々のアルゴリズムが他の静的アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-01-29T10:26:16Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z) - Unsupervised Model Personalization while Preserving Privacy and
Scalability: An Open Problem [55.21502268698577]
本研究では,非教師なしモデルパーソナライゼーションの課題について検討する。
この問題を探求するための新しいDual User-Adaptation Framework(DUA)を提供する。
このフレームワークは、サーバ上のモデルパーソナライズとユーザデバイス上のローカルデータ正規化に柔軟にユーザ適応を分散させる。
論文 参考訳(メタデータ) (2020-03-30T09:35:12Z) - MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive
Model Selection [110.87712780017819]
推薦システムにおけるユーザレベルの適応モデル選択を容易にするメタラーニングフレームワークを提案する。
2つのパブリックデータセットと実世界のプロダクションデータセットで実験を行います。
論文 参考訳(メタデータ) (2020-01-22T16:05:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。