論文の概要: ComPO: Community Preferences for Language Model Personalization
- arxiv url: http://arxiv.org/abs/2410.16027v1
- Date: Mon, 21 Oct 2024 14:02:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:13:17.591573
- Title: ComPO: Community Preferences for Language Model Personalization
- Title(参考訳): ComPO:言語モデルパーソナライゼーションのためのコミュニティの選好
- Authors: Sachin Kumar, Chan Young Park, Yulia Tsvetkov, Noah A. Smith, Hannaneh Hajishirzi,
- Abstract要約: ComPOは、言語モデルにおける好みの最適化をパーソナライズする手法である。
ComPRedはRedditからコミュニティレベルの好みを持った質問応答データセットです。
- 参考スコア(独自算出の注目度): 122.54846260663922
- License:
- Abstract: Conventional algorithms for training language models (LMs) with human feedback rely on preferences that are assumed to account for an "average" user, disregarding subjectivity and finer-grained variations. Recent studies have raised concerns that aggregating such diverse and often contradictory human feedback to finetune models results in generic models that generate outputs not preferred by many user groups, as they tend to average out styles and norms. To address this issue, we draw inspiration from recommendation systems and propose ComPO, a method to personalize preference optimization in LMs by contextualizing the probability distribution of model outputs with the preference provider. Focusing on group-level preferences rather than individuals, we collect and release ComPRed, a question answering dataset with community-level preferences from Reddit. This dataset facilitates studying diversity in preferences without incurring privacy concerns associated with individual feedback. Our experiments reveal that conditioning language models on a community identifier (i.e., subreddit name) during preference tuning substantially enhances model performance. Conversely, replacing this context with random subreddit identifiers significantly diminishes performance, highlighting the effectiveness of our approach in tailoring responses to communities' preferences.
- Abstract(参考訳): 人間のフィードバックで言語モデル(LM)を訓練するための従来のアルゴリズムは、主観性とよりきめ細かいバリエーションを無視し、平均的なユーザーを考慮に入れていると仮定される好みに依存している。
近年の研究では、このような多様で矛盾するフィードバックを微調整モデルに集約すると、多くのユーザグループで好まれないアウトプットを生成するジェネリックモデルが生まれ、スタイルや規範を平均化する傾向にあるという懸念が持ち上がっている。
この問題に対処するため,推奨システムからインスピレーションを得て,モデル出力の確率分布を嗜好提供者とともに文脈化することで,LMにおける選好最適化をパーソナライズするComPOを提案する。
個人よりもグループレベルの選好に注目して、Redditからコミュニティレベルの選好を持つデータセットであるComPRedを収集し、リリースする。
このデータセットは、個人のフィードバックに関連するプライバシー上の懸念を生じさせることなく、好みの多様性を研究するのに役立つ。
実験の結果,選好調整中のコミュニティ識別子(サブレディット名)の条件付き言語モデルにより,モデル性能が著しく向上することが判明した。
逆に,このコンテキストをランダムなサブレディット識別子に置き換えることで,コミュニティの嗜好に反応する際のアプローチの有効性が顕著に低下する。
関連論文リスト
- Personalized Preference Fine-tuning of Diffusion Models [75.22218338096316]
拡散モデルとパーソナライズされた嗜好を整合させるマルチリワード最適化の目的であるPDを導入する。
PPDでは、拡散モデルがユーザーの個人の好みを数秒で学習する。
提案手法は,Stable Cascadeに対して平均76%の勝利率を達成し,特定のユーザの好みをより正確に反映した画像を生成する。
論文 参考訳(メタデータ) (2025-01-11T22:38:41Z) - No Preference Left Behind: Group Distributional Preference Optimization [46.98320272443297]
Group Distribution Preference Optimization (GDPO) は、言語モデルをグループ内の好みの分布と整合させる新しいフレームワークである。
GDPOは、グループの信念分布の統計的推定を用いて言語モデルを校正する。
GDPOはトレーニング中にこのアライメントギャップを一貫して削減します。
論文 参考訳(メタデータ) (2024-12-28T23:30:47Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
大きな言語モデル(LLM)は、日々のアプリケーションにますます組み込まれています。
個人ユーザの多様な嗜好との整合性を確保することは、重要な課題となっている。
数発のステアライメントのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-18T16:14:59Z) - Beyond the Binary: Capturing Diverse Preferences With Reward Regularization [15.518838657050173]
この二項選択への依存は、現実のタスクにおいて対象ユーザのより広範囲で集約的な嗜好を捉えるものではない、と我々は主張する。
本稿では、既存の二分選好データセットを合成選好判断で拡張し、潜在的なユーザ不一致を推定する、シンプルで効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-12-05T02:35:46Z) - Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback [87.37721254914476]
アノテーションの品質向上のために,人間とLMの入力を組み合わせたルーティングフレームワークを提案する。
我々は、人間とLMアノテーションの任意の組み合わせで報酬モデルの性能を予測するために、性能予測モデルを訓練する。
選択したハイブリッド混合物は,一方のみ使用した場合と比較して,報奨モデルの性能が向上することを示す。
論文 参考訳(メタデータ) (2024-10-24T20:04:15Z) - PAL: Pluralistic Alignment Framework for Learning from Heterogeneous Preferences [6.398937923320069]
我々は、既存の事前学習戦略を補完する人間の嗜好をモデル化するフレームワークであるPALを提案する。
PALは,強いベースラインと比較して,競争報酬モデルの精度が向上することを示す。
論文 参考訳(メタデータ) (2024-06-12T17:54:54Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
命令応答対に対して協調的に好みを抽出する新しい軸を提案する。
命令と応答ペアを併用することで、大きな言語モデルのアライメントを大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-03-31T02:05:40Z) - Aligning Crowd Feedback via Distributional Preference Reward Modeling [28.754532173765686]
本研究では,大規模言語モデルと多様な人間の嗜好を一致させるために,DPRM(Distributedal Preference Reward Model)を提案する。
実験の結果,DPRM は LLM と人口嗜好の整合性を著しく向上させ,より正確で偏りがなく,文脈的に適切な応答をもたらすことが示された。
論文 参考訳(メタデータ) (2024-02-15T07:29:43Z) - MaxMin-RLHF: Alignment with Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) は、言語モデルと人間の嗜好を一致させる。
予測最大化アルゴリズムを用いて嗜好分布の混合を学習し、人間の嗜好をよりよく表現する。
従来のRLHFアルゴリズムよりも16%以上の勝利率向上を実現している。
論文 参考訳(メタデータ) (2024-02-14T03:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。