Concentration properties of fractional posterior in 1-bit matrix completion
- URL: http://arxiv.org/abs/2404.08969v1
- Date: Sat, 13 Apr 2024 11:22:53 GMT
- Title: Concentration properties of fractional posterior in 1-bit matrix completion
- Authors: The Tien Mai,
- Abstract summary: This work specifically addresses the scenario of binary observations, often termed as 1-bit matrix completion.
We tackle this gap by considering a general, non-uniform sampling scheme and providing theoretical assurances on the efficacy of the fractional posterior.
Our results are comparable to those found in the frequentist literature, yet demand fewer restrictive assumptions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The problem of estimating a matrix based on a set of its observed entries is commonly referred to as the matrix completion problem. In this work, we specifically address the scenario of binary observations, often termed as 1-bit matrix completion. While numerous studies have explored Bayesian and frequentist methods for real-value matrix completion, there has been a lack of theoretical exploration regarding Bayesian approaches in 1-bit matrix completion. We tackle this gap by considering a general, non-uniform sampling scheme and providing theoretical assurances on the efficacy of the fractional posterior. Our contributions include obtaining concentration results for the fractional posterior and demonstrating its effectiveness in recovering the underlying parameter matrix. We accomplish this using two distinct types of prior distributions: low-rank factorization priors and a spectral scaled Student prior, with the latter requiring fewer assumptions. Importantly, our results exhibit an adaptive nature by not mandating prior knowledge of the rank of the parameter matrix. Our findings are comparable to those found in the frequentist literature, yet demand fewer restrictive assumptions.
Related papers
- Low-rank Bayesian matrix completion via geodesic Hamiltonian Monte Carlo on Stiefel manifolds [0.18416014644193066]
We present a new sampling-based approach for enabling efficient computation of low-rank Bayesian matrix completion.
We show that our approach resolves the sampling difficulties encountered by standard Gibbs samplers for the common two-matrix factorization used in matrix completion.
Numerical examples demonstrate superior sampling performance, including better mixing and faster convergence to a stationary distribution.
arXiv Detail & Related papers (2024-10-27T03:12:53Z) - Entrywise error bounds for low-rank approximations of kernel matrices [55.524284152242096]
We derive entrywise error bounds for low-rank approximations of kernel matrices obtained using the truncated eigen-decomposition.
A key technical innovation is a delocalisation result for the eigenvectors of the kernel matrix corresponding to small eigenvalues.
We validate our theory with an empirical study of a collection of synthetic and real-world datasets.
arXiv Detail & Related papers (2024-05-23T12:26:25Z) - Quantization of Large Language Models with an Overdetermined Basis [73.79368761182998]
We introduce an algorithm for data quantization based on the principles of Kashin representation.
Our findings demonstrate that Kashin Quantization achieves competitive or superior quality in model performance.
arXiv Detail & Related papers (2024-04-15T12:38:46Z) - Misclassification excess risk bounds for 1-bit matrix completion [0.0]
This study investigates the misclassification excess risk bound in the context of 1-bit matrix completion.
Matrix completion has garnered considerable attention in the last two decades due to its diverse applications across various fields.
arXiv Detail & Related papers (2023-12-20T11:42:49Z) - Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
We study matrix estimation problems arising in reinforcement learning (RL) with low-rank structure.
In low-rank bandits, the matrix to be recovered specifies the expected arm rewards, and for low-rank Markov Decision Processes (MDPs), it may for example characterize the transition kernel of the MDP.
We show that simple spectral-based matrix estimation approaches efficiently recover the singular subspaces of the matrix and exhibit nearly-minimal entry-wise error.
arXiv Detail & Related papers (2023-10-10T17:06:41Z) - Causal Matrix Completion [15.599296461516984]
Matrix completion is the study of recovering an underlying matrix from a sparse subset of noisy observations.
Traditionally, it is assumed that the entries of the matrix are "missing completely at random"
arXiv Detail & Related papers (2021-09-30T14:17:56Z) - Bayesian matrix completion with a spectral scaled Student prior:
theoretical guarantee and efficient sampling [0.30458514384586394]
A spectral scaled Student prior is exploited to favour the underlying low-rank structure of the data matrix.
We show that our approach enjoys a minimax-optimal oracle inequality which guarantees that our method works well under model misspecification.
arXiv Detail & Related papers (2021-04-16T16:03:43Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
Robust low-rank matrix completion (RMC) has been studied extensively for computer vision, signal processing and machine learning applications.
This problem aims to decompose a partially observed matrix into the superposition of a low-rank matrix and a sparse matrix, where the sparse matrix captures the grossly corrupted entries of the matrix.
A widely used approach to tackle RMC is to consider a convex formulation, which minimizes the nuclear norm of the low-rank matrix (to promote low-rankness) and the l1 norm of the sparse matrix (to promote sparsity).
In this paper, motivated by some recent works on low-
arXiv Detail & Related papers (2020-08-18T04:46:22Z) - A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix
Completion [60.52730146391456]
We propose a new non scalable low-rank regularizer called "nuclear Frobenius norm" regularizer, which is adaptive and sound.
It bypasses the computation of singular values and allows fast optimization by algorithms.
It obtains state-of-the-art recovery performance while being the fastest in existing matrix learning methods.
arXiv Detail & Related papers (2020-08-14T18:47:58Z) - Robust Matrix Completion with Mixed Data Types [0.0]
We consider the problem of recovering a structured low rank matrix with partially observed entries with mixed data types.
Most approaches assume that there is only one underlying distribution and the low rank constraint is regularized by the matrix Schatten Norm.
We propose a computationally feasible statistical approach with strong recovery guarantees along with an algorithmic framework suited for parallelization to recover a low rank matrix with partially observed entries for mixed data types in one step.
arXiv Detail & Related papers (2020-05-25T21:35:10Z) - Relative Error Bound Analysis for Nuclear Norm Regularized Matrix Completion [101.83262280224729]
We develop a relative error bound for nuclear norm regularized matrix completion.
We derive a relative upper bound for recovering the best low-rank approximation of the unknown matrix.
arXiv Detail & Related papers (2015-04-26T13:12:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.