論文の概要: ALICE: Combining Feature Selection and Inter-Rater Agreeability for Machine Learning Insights
- arxiv url: http://arxiv.org/abs/2404.09053v1
- Date: Sat, 13 Apr 2024 17:34:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 17:24:26.034663
- Title: ALICE: Combining Feature Selection and Inter-Rater Agreeability for Machine Learning Insights
- Title(参考訳): ALICE: 機械学習インサイトのための特徴選択とラタ間アグリエビリティの組み合わせ
- Authors: Bachana Anasashvili, Vahidin Jeleskovic,
- Abstract要約: 本稿では,新たなPythonライブラリであるAutomated Learning for Insightful Comparison and Evaluation(ALICE)を提案する。
これは、ブラックボックス機械学習モデルに対する洞察を求めるために、従来の特徴選択と、ユーザフレンドリなシンプルな方法で、ラタ間適合性の概念を融合する。
このフレームワークは、MLにおける解釈可能性の主要な概念の概要に続いて提案されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a new Python library called Automated Learning for Insightful Comparison and Evaluation (ALICE), which merges conventional feature selection and the concept of inter-rater agreeability in a simple, user-friendly manner to seek insights into black box Machine Learning models. The framework is proposed following an overview of the key concepts of interpretability in ML. The entire architecture and intuition of the main methods of the framework are also thoroughly discussed and results from initial experiments on a customer churn predictive modeling task are presented, alongside ideas for possible avenues to explore for the future. The full source code for the framework and the experiment notebooks can be found at: https://github.com/anasashb/aliceHU
- Abstract(参考訳): 本稿では,従来の特徴選択と,ブラックボックス機械学習モデルに対する洞察を得るために,ユーザフレンドリな方法でラター間適合性の概念を融合させる,ALICE(Automated Learning for Insightful Comparison and Evaluation)という新しいPythonライブラリを提案する。
このフレームワークは、MLにおける解釈可能性の主要な概念の概要に続いて提案されている。
フレームワークの主要な手法のアーキテクチャ全体と直感についても深く議論し、顧客チャーン予測モデリングタスクの初期実験の結果と、将来を探究するための可能な方法のアイデアを提示する。
フレームワークと実験ノートブックの完全なソースコードは、https://github.com/anasashb/aliceHU.comで見ることができる。
関連論文リスト
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - Conceptual Learning via Embedding Approximations for Reinforcing Interpretability and Transparency [2.7719338074999547]
解釈可能性が最重要である領域において、概念ボトルネックモデル(CBM)が重要なツールとして出現している。
本研究では、アンダーラインtextbfReinforcecing Interpretability and Transparency に対するアンダーラインtextbfEmbedding UnderlinetextbfApproximations によるアンダーラインtextbfConceptual UnderlinetextbfLbeddingを提案する。
論文 参考訳(メタデータ) (2024-06-13T06:04:34Z) - CoProNN: Concept-based Prototypical Nearest Neighbors for Explaining Vision Models [1.0855602842179624]
ドメインエキスパートが自然言語で直感的にコンピュータビジョンタスクのコンセプトベースの説明を素早く作成できる新しいアプローチを提案する。
CoProNNのモジュラー設計は実装が簡単で、新しいタスクに適応しやすく、分類とテキスト・トゥ・イメージ・モデルを置き換えることができる。
我々の戦略は、粗粒度画像分類タスクにおける他の概念ベースのXAIアプローチと非常によく競合し、さらに細粒度細粒度タスクにおいてそれらの手法よりも優れることを示した。
論文 参考訳(メタデータ) (2024-04-23T08:32:38Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - Deciphering AutoML Ensembles: cattleia's Assistance in Decision-Making [0.0]
Cattleiaは、回帰、マルチクラス、バイナリ分類タスクのアンサンブルを解読するアプリケーションである。
Auto-Sklearn、AutoGluon、FLAMLという3つのAutoMLパッケージで構築されたモデルで動作する。
論文 参考訳(メタデータ) (2024-03-19T11:56:21Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Exploring Effective Factors for Improving Visual In-Context Learning [56.14208975380607]
In-Context Learning(ICL)は、いくつかのデモ(別名プロンプト)を通じて新しいタスクを理解し、モデルをチューニングせずに新しい入力を予測することである。
本稿では,視覚的文脈学習の推論性能に直接的な影響を及ぼす要因として,迅速な選択と迅速な融合があげられる。
視覚的インコンテキスト学習のためのシンプルなフレームワークプロンプトSelFを提案する。
論文 参考訳(メタデータ) (2023-04-10T17:59:04Z) - FACT: Learning Governing Abstractions Behind Integer Sequences [7.895232155155041]
完全なフィニシャルな記述を認める概念の学習に関する新しい見解を紹介する。
機械学習モデルによる概念理解を目的としたベンチマークタスクのセットを配置する。
知識表現と推論の研究をさらに支援するため,FACT(Finitary Abstraction Toolkit)を提案する。
論文 参考訳(メタデータ) (2022-09-20T08:20:03Z) - Leveraging Explanations in Interactive Machine Learning: An Overview [10.284830265068793]
説明はAIと機械学習(ML)コミュニティへの関心が高まっている。
本稿では,対話的能力と説明が組み合わさった研究の概要について述べる。
論文 参考訳(メタデータ) (2022-07-29T07:46:11Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
数ショット分類のための高速な最適化に基づくメタラーニング手法を提案する。
我々の戦略はメタ学習において学習すべき基礎学習者の目的の重要な側面を可能にする。
我々は、我々のアプローチの速度と効果を実証し、総合的な実験分析を行う。
論文 参考訳(メタデータ) (2020-10-01T15:59:31Z) - Dynamic Feature Integration for Simultaneous Detection of Salient
Object, Edge and Skeleton [108.01007935498104]
本稿では,高次物体分割,エッジ検出,スケルトン抽出など,低レベルの3つの視覚問題を解く。
まず、これらのタスクで共有される類似点を示し、統一されたフレームワークの開発にどのように活用できるかを示す。
論文 参考訳(メタデータ) (2020-04-18T11:10:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。