論文の概要: Conceptual Learning via Embedding Approximations for Reinforcing Interpretability and Transparency
- arxiv url: http://arxiv.org/abs/2406.08840v1
- Date: Thu, 13 Jun 2024 06:04:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 21:08:42.573013
- Title: Conceptual Learning via Embedding Approximations for Reinforcing Interpretability and Transparency
- Title(参考訳): 解釈可能性と透明性の強化のための埋め込み近似による概念学習
- Authors: Maor Dikter, Tsachi Blau, Chaim Baskin,
- Abstract要約: 解釈可能性が最重要である領域において、概念ボトルネックモデル(CBM)が重要なツールとして出現している。
本研究では、アンダーラインtextbfReinforcecing Interpretability and Transparency に対するアンダーラインtextbfEmbedding UnderlinetextbfApproximations によるアンダーラインtextbfConceptual UnderlinetextbfLbeddingを提案する。
- 参考スコア(独自算出の注目度): 2.7719338074999547
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Concept bottleneck models (CBMs) have emerged as critical tools in domains where interpretability is paramount. These models rely on predefined textual descriptions, referred to as concepts, to inform their decision-making process and offer more accurate reasoning. As a result, the selection of concepts used in the model is of utmost significance. This study proposes \underline{\textbf{C}}onceptual \underline{\textbf{L}}earning via \underline{\textbf{E}}mbedding \underline{\textbf{A}}pproximations for \underline{\textbf{R}}einforcing Interpretability and Transparency, abbreviated as CLEAR, a framework for constructing a CBM for image classification. Using score matching and Langevin sampling, we approximate the embedding of concepts within the latent space of a vision-language model (VLM) by learning the scores associated with the joint distribution of images and concepts. A concept selection process is then employed to optimize the similarity between the learned embeddings and the predefined ones. The derived bottleneck offers insights into the CBM's decision-making process, enabling more comprehensive interpretations. Our approach was evaluated through extensive experiments and achieved state-of-the-art performance on various benchmarks. The code for our experiments is available at https://github.com/clearProject/CLEAR/tree/main
- Abstract(参考訳): 解釈可能性が最重要である領域において、概念ボトルネックモデル(CBM)が重要なツールとして出現している。
これらのモデルは、定義済みのテキスト記述(概念と呼ばれる)に依存し、意思決定プロセスに通知し、より正確な推論を提供する。
結果として、モデルで使用される概念の選択が最も重要である。
本研究では,画像分類のための CBM 構築フレームワークである CLEAR を省略した CLEAR と略す CLEAR に対して, \underline{\textbf{C}}onceptual \underline{\textbf{L}}earning via \underline{\textbf{E}}mbedding \underline{\textbf{A}}pproximations for \underline{\textbf{R}}eincing Interpretability and Transparency を提案する。
スコアマッチングとランゲヴィンサンプリングを用いて,視覚言語モデル(VLM)の潜在空間における概念の埋め込みを,画像と概念の連成分布に関連するスコアを学習することによって近似する。
次に、学習した埋め込みと事前に定義されたものとの類似性を最適化するために概念選択プロセスが使用される。
導出されたボトルネックは、CBMの意思決定プロセスに関する洞察を与え、より包括的な解釈を可能にする。
提案手法は広範囲な実験により評価され,様々なベンチマークで最先端の性能を達成した。
実験のコードはhttps://github.com/clearProject/CLEAR/tree/mainで公開されている。
関連論文リスト
- Explain via Any Concept: Concept Bottleneck Model with Open Vocabulary Concepts [8.028021897214238]
OpenCBMはオープン語彙の概念を持つ最初のCBMである。
ベンチマークデータセットCUB-200-2011の分類精度は,従来のCBMよりも9%向上した。
論文 参考訳(メタデータ) (2024-08-05T06:42:00Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - MCPNet: An Interpretable Classifier via Multi-Level Concept Prototypes [24.28807025839685]
我々は、低レベルの特徴の意思決定プロセスに関する洞察が欠如している説明は、完全に忠実でも有用でもないと論じる。
本稿では,クラス認識概念分布(CCD)の損失を通じて,分類目的のマルチレベル概念のプロトタイプ分布を学習・調整する新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-04-13T11:13:56Z) - Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning [86.15009879251386]
概念ボトルネックモデル(CBM)を用いた新しいアーキテクチャと説明可能な分類法を提案する。
CBMには、さらなる概念のセットが必要である。
CLIPをベースとしたボトルネックモデルにおいて,スパース隠れ層を用いた精度の大幅な向上を示す。
論文 参考訳(メタデータ) (2024-04-04T09:43:43Z) - Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable? [8.391254800873599]
本稿では,設計によって解釈できない事前学習型ニューラルネットワークに対して,概念に基づく介入を行う手法を提案する。
我々は、インターベンタビリティの概念を概念に基づく介入の有効性の尺度として定式化し、この定義を微調整ブラックボックスに活用する。
論文 参考訳(メタデータ) (2024-01-24T16:02:14Z) - Rewrite Caption Semantics: Bridging Semantic Gaps for
Language-Supervised Semantic Segmentation [100.81837601210597]
本研究では,事前学習データにおける視覚的意味論とテキスト的意味論のギャップを埋めるための概念キュレーション(CoCu)を提案する。
CoCuは、最高にゼロショット転送性能を達成し、言語教師ありセグメンテーションベースラインを大きなマージンで大幅に向上させる。
論文 参考訳(メタデータ) (2023-09-24T00:05:39Z) - Sparse Linear Concept Discovery Models [11.138948381367133]
概念ボトルネックモデル(Concept Bottleneck Models, CBM)は、隠蔽層が人間の理解可能な概念に結びついている一般的なアプローチである。
本稿では,Contrastive Language Imageモデルと単一スパース線形層に基づく,シンプルかつ直感的に解釈可能なフレームワークを提案する。
実験により、我々のフレームワークは、最近のCBMアプローチを精度的に上回るだけでなく、一例あたりの疎度も高いことを示す。
論文 参考訳(メタデータ) (2023-08-21T15:16:19Z) - Advancing Visual Grounding with Scene Knowledge: Benchmark and Method [74.72663425217522]
ビジュアルグラウンドディング(VG)は、視覚と言語の間にきめ細かいアライメントを確立することを目的としている。
既存のVGデータセットの多くは、単純な記述テキストを使って構築されている。
我々は、アンダーラインScene underline-guided underlineVisual underlineGroundingの新たなベンチマークを提案する。
論文 参考訳(メタデータ) (2023-07-21T13:06:02Z) - ProbVLM: Probabilistic Adapter for Frozen Vision-Language Models [69.50316788263433]
本稿では,事前学習された視覚言語モデルの埋め込みに対する確率分布を推定する確率的アダプタProbVLMを提案する。
本稿では,検索タスクにおける不確実性埋め込みのキャリブレーションを定量化し,ProbVLMが他の手法よりも優れていることを示す。
本稿では,大規模な事前学習型潜伏拡散モデルを用いて,埋め込み分布を可視化する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-07-01T18:16:06Z) - Unsupervised Interpretable Basis Extraction for Concept-Based Visual
Explanations [53.973055975918655]
提案手法を用いて抽出したベースに変換すると,中間層表現がより解釈可能であることを示す。
提案手法は,提案手法を教師付きアプローチから抽出したベースと,教師付き手法から抽出したベースを比較した結果,教師なし手法は教師付き手法の限界を構成する強みを有し,今後の研究の方向性を示す。
論文 参考訳(メタデータ) (2023-03-19T00:37:19Z) - GlanceNets: Interpretabile, Leak-proof Concept-based Models [23.7625973884849]
概念ベースモデル(CBM)は、高レベルの概念の語彙の獲得と推論によって、ハイパフォーマンスと解釈可能性を組み合わせる。
我々は、モデル表現と基礎となるデータ生成プロセスとの整合性の観点から、解釈可能性を明確に定義する。
GlanceNetsは不整合表現学習とオープンセット認識の技法を利用してアライメントを実現する新しいCBMである。
論文 参考訳(メタデータ) (2022-05-31T08:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。