Physics-informed tracking of qubit fluctuations
- URL: http://arxiv.org/abs/2404.09212v2
- Date: Tue, 16 Jul 2024 08:47:58 GMT
- Title: Physics-informed tracking of qubit fluctuations
- Authors: Fabrizio Berritta, Jan A. Krzywda, Jacob Benestad, Joost van der Heijden, Federico Fedele, Saeed Fallahi, Geoffrey C. Gardner, Michael J. Manfra, Evert van Nieuwenburg, Jeroen Danon, Anasua Chatterjee, Ferdinand Kuemmeth,
- Abstract summary: We implement a physics-informed and an adaptive Bayesian estimation strategy and apply them in real time to a semiconductor spin qubit.
The strategy propagates a probability distribution inside the quantum controller according to the Fokker-Planck equation.
The strategy can be applied to other qubit platforms by tailoring the appropriate update equation to capture their distinct noise sources.
- Score: 22.798654837751112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Environmental fluctuations degrade the performance of solid-state qubits but can in principle be mitigated by real-time Hamiltonian estimation down to time scales set by the estimation efficiency. We implement a physics-informed and an adaptive Bayesian estimation strategy and apply them in real time to a semiconductor spin qubit. The physics-informed strategy propagates a probability distribution inside the quantum controller according to the Fokker-Planck equation, appropriate for describing the effects of nuclear spin diffusion in gallium-arsenide. Evaluating and narrowing the anticipated distribution by a predetermined qubit probe sequence enables improved dynamical tracking of the uncontrolled magnetic field gradient within the singlet-triplet qubit. The adaptive strategy replaces the probe sequence by a small number of qubit probe cycles, with each probe time conditioned on the previous measurement outcomes, thereby further increasing the estimation efficiency. The combined real-time estimation strategy efficiently tracks low-frequency nuclear spin fluctuations in solid-state qubits, and can be applied to other qubit platforms by tailoring the appropriate update equation to capture their distinct noise sources.
Related papers
- Noisy atomic magnetometry with Kalman filtering and measurement-based feedback [0.0]
We propose a comprehensive approach that integrates measurement, estimation and control strategies.
This involves implementing a quantum non-demolition measurement based on continuous light-probing of the atomic ensemble.
Thanks to the feedback proposed, the atoms exhibit entanglement even when the measurement data is discarded.
arXiv Detail & Related papers (2024-03-21T18:11:09Z) - Deterministic and Bayesian Characterization of Quantum Computing Devices [0.4194295877935867]
This paper presents a data-driven characterization approach for estimating transition frequencies and decay times in a superconducting quantum device.
The data includes parity events in the transition frequency between the first and second excited states.
A simple but effective mathematical model, based upon averaging solutions of two Lindbladian models, is demonstrated to accurately capture the experimental observations.
arXiv Detail & Related papers (2023-06-23T19:11:41Z) - Optimizing one-axis twists for variational Bayesian quantum metrology [0.0]
In particular, qubit phase estimation, or rotation sensing, appears as a ubiquitous problem with applications to electric field sensing, magnetometry, atomic clocks, and gyroscopes.
We propose a new family of parametrized encoding and decoding protocols called arbitrary-axis twist ansatzes.
We show that it can lead to a substantial reduction in the number of one-axis twists needed to achieve a target estimation error.
arXiv Detail & Related papers (2022-12-23T16:45:15Z) - Measurement-based state preparation of Kerr parametric oscillators [0.09176056742068812]
We study the state preparation of a KPO based on homodyne detection, which does not require modulation of a pump field or an auxiliary drive field.
We show that the detection data, if averaged over a proper time to decrease the effect of measurement noise, has a strong correlation with the state of the KPO.
We examine the success probability of the state estimation taking into account the effect of the measurement noise and bit flips.
arXiv Detail & Related papers (2022-08-09T05:12:09Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Greedy parameter optimization for diabatic quantum annealing [0.0]
A shorter processing time is desirable for quantum computation to minimize the effects of noise.
We propose a simple procedure to variationally determine a set of parameters in the transverse-field Ising model.
We test the idea in the ferromagnetic system with all-to-all couplings and spin-glass problems.
arXiv Detail & Related papers (2021-11-26T01:31:01Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
We demonstrate unprecedented accuracy for rapid gravitational-wave parameter estimation with deep learning.
We analyze eight gravitational-wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog.
We find very close quantitative agreement with standard inference codes, but with inference times reduced from O(day) to a minute per event.
arXiv Detail & Related papers (2021-06-23T18:00:05Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.