論文の概要: Fault Detection in Mobile Networks Using Diffusion Models
- arxiv url: http://arxiv.org/abs/2404.09240v1
- Date: Sun, 14 Apr 2024 12:59:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 14:58:08.902240
- Title: Fault Detection in Mobile Networks Using Diffusion Models
- Title(参考訳): 拡散モデルを用いた移動体ネットワークの故障検出
- Authors: Mohamad Nabeel, Doumitrou Daniil Nimara, Tahar Zanouda,
- Abstract要約: 本稿では,生成型AIモデルを用いて通信網の異常を検出するシステムを提案する。
拡散モデルを用いて、異常検出のためのモデルを訓練するいくつかの戦略を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's hyper-connected world, ensuring the reliability of telecom networks becomes increasingly crucial. Telecom networks encompass numerous underlying and intertwined software and hardware components, each providing different functionalities. To ensure the stability of telecom networks, telecom software, and hardware vendors developed several methods to detect any aberrant behavior in telecom networks and enable instant feedback and alerts. These approaches, although powerful, struggle to generalize due to the unsteady nature of the software-intensive embedded system and the complexity and diversity of multi-standard mobile networks. In this paper, we present a system to detect anomalies in telecom networks using a generative AI model. We evaluate several strategies using diffusion models to train the model for anomaly detection using multivariate time-series data. The contributions of this paper are threefold: (i) A proposal of a framework for utilizing diffusion models for time-series anomaly detection in telecom networks, (ii) A proposal of a particular Diffusion model architecture that outperforms other state-of-the-art techniques, (iii) Experiments on a real-world dataset to demonstrate that our model effectively provides explainable results, exposing some of its limitations and suggesting future research avenues to enhance its capabilities further.
- Abstract(参考訳): 今日のハイパーコネクションの世界では、通信ネットワークの信頼性がますます重要になっている。
テレコムネットワークは、多くの基盤となるソフトウェアとハードウェアコンポーネントを含んでおり、それぞれ異なる機能を提供している。
テレコムネットワークの安定性を確保するため、テレコムソフトウェアおよびハードウェアベンダーは、テレコムネットワークの異常な振る舞いを検出し、即時フィードバックと警告を可能にするいくつかの方法を開発した。
これらのアプローチは強力ではあるが、ソフトウェア集約型組み込みシステムの不安定な性質とマルチスタンダードモバイルネットワークの複雑さと多様性のために一般化に苦慮している。
本稿では,生成型AIモデルを用いて通信網の異常を検出するシステムを提案する。
拡散モデルを用いて,多変量時系列データを用いた異常検出モデルの訓練を行う。
本論文の貢献は3つある。
一 通信網における時系列異常検出のための拡散モデルを利用したフレームワークの提案
(II)他の最先端技術より優れた特定の拡散モデルアーキテクチャの提案
三 実世界のデータセットを用いた実験により、我々のモデルが効果的に説明可能な結果を提供し、その限界のいくつかを露呈し、さらなる能力向上に向けた今後の研究の道のりを示唆する。
関連論文リスト
- AI Flow at the Network Edge [58.31090055138711]
AI Flowは、デバイス、エッジノード、クラウドサーバ間で利用可能な異種リソースを共同で活用することで、推論プロセスを合理化するフレームワークである。
この記事では、AI Flowのモチベーション、課題、原則を特定するためのポジションペーパーとして機能する。
論文 参考訳(メタデータ) (2024-11-19T12:51:17Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Fault Detection in Telecom Networks using Bi-level Federated Graph
Neural Networks [0.0]
テレコムネットワークの複雑さと多様性は、メンテナンスと運用の努力に負担を掛けている。
厳格なセキュリティとプライバシ要件は、モバイルオペレータがネットワークデータを活用する上での課題である。
本稿では,二値グラフニューラルネットワークの異常検出と診断モデルを提案する。
論文 参考訳(メタデータ) (2023-11-24T13:23:54Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
確率的生成モデルの観点からPCAに基づく異常検出手法を再検討する。
2つの異なるデータセットを用いて数学的モデルを評価した。
論文 参考訳(メタデータ) (2023-02-02T13:41:18Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Parallel Successive Learning for Dynamic Distributed Model Training over
Heterogeneous Wireless Networks [50.68446003616802]
フェデレートラーニング(Federated Learning, FedL)は、一連の無線デバイスにモデルトレーニングを配布する一般的なテクニックとして登場した。
我々は,FedLアーキテクチャを3次元に拡張した並列逐次学習(PSL)を開発した。
我々の分析は、分散機械学習におけるコールド対ウォームアップモデルの概念とモデル慣性について光を当てている。
論文 参考訳(メタデータ) (2022-02-07T05:11:01Z) - Learning Graph Structures with Transformer for Multivariate Time Series
Anomaly Detection in IoT [11.480824844205864]
本研究は,グラフ構造とグラフ畳み込みを自動的に学習することにより,多変量時系列異常検出のための新しいフレームワークGTAを提案する。
また,グラフノード間の異常情報フローをモデル化するために,影響伝播畳み込みという新しいグラフ畳み込みを考案した。
4つの公開異常検出ベンチマークの実験は、我々のアプローチが他の最先端技術よりも優れていることをさらに証明している。
論文 参考訳(メタデータ) (2021-04-08T01:45:28Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
次世代のワイヤレスネットワークは、エッジデバイスが収集するさまざまな種類のデータを分析する多くの機械学習ツールやアプリケーションを可能にする。
エッジデバイスが生データ交換なしでMLモデルを協調的にトレーニングできるようにする手段として,分散学習と推論技術が提案されている。
本稿では,ワイヤレスエッジネットワーク上で分散学習を効率的に効果的に展開する方法を包括的に研究する。
論文 参考訳(メタデータ) (2021-04-05T20:57:56Z) - Semi-supervised Variational Temporal Convolutional Network for IoT
Communication Multi-anomaly Detection [3.3659034873495632]
モノのインターネット(IoT)デバイスは、巨大な通信ネットワークを構築するために構築されます。
これらのデバイスは実際には安全ではないため、通信ネットワークが攻撃者によって露出されることを意味する。
本稿では,IoT 複数異常検出のための半監視ネットワーク SS-VTCN を提案する。
論文 参考訳(メタデータ) (2021-04-05T08:51:24Z) - On the Usage of Generative Models for Network Anomaly Detection in
Multivariate Time-Series [3.1790432590377242]
本稿では,時系列におけるネットワーク異常検出の新しい手法であるNet-GANを紹介する。
我々は、生成モデルの背後にある概念を利用して、Net-GANの補完的アプローチであるNet-VAEを考案する。
我々は,IoTセンサデータにおける異常検出,ネットワーク計測における侵入検出など,異なる監視シナリオにおけるNet-GANとNet-VAEを評価した。
論文 参考訳(メタデータ) (2020-10-16T10:22:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。