論文の概要: Bridging Data Islands: Geographic Heterogeneity-Aware Federated Learning for Collaborative Remote Sensing Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2404.09292v2
- Date: Tue, 24 Dec 2024 14:07:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:53:25.615601
- Title: Bridging Data Islands: Geographic Heterogeneity-Aware Federated Learning for Collaborative Remote Sensing Semantic Segmentation
- Title(参考訳): ブリッジングデータ諸島:地理的不均一性を考慮した協調的リモートセンシングセマンティックセマンティックセマンティックセグメンテーションのためのフェデレーション学習
- Authors: Jieyi Tan, Yansheng Li, Sergey A. Bartalev, Shinkarenko Stanislav, Bo Dang, Yongjun Zhang, Liangqi Yuan, Wei Chen,
- Abstract要約: 高品質な注釈付きリモートセンシング画像は、しばしば分離され、機関に分散される。
リモートセンシングデータアイランドの問題は、グローバルモデルのトレーニングに独立したデータセットを完全に活用する上での課題を提起している。
我々は、RSSでデータアイランドをブリッジする新しい地理異質性を考慮したフェデレーションラーニング(GeoFed)フレームワークを提案する。
我々のフレームワークは,Global Insight Enhancement(GIE)モジュール,Essential Feature Mining(EFM)モジュール,LoGo(LoGo)モジュールという3つのモジュールで構成されています。
- 参考スコア(独自算出の注目度): 7.265569559979736
- License:
- Abstract: Remote sensing semantic segmentation (RSS) is an essential technology in earth observation missions. Due to concerns over geographic information security, data privacy, storage bottleneck and industry competition, high-quality annotated remote sensing images are often isolated and distributed across institutions. The issue of remote sensing data islands poses challenges for fully utilizing isolated datasets to train a global model. Federated learning (FL), a privacy-preserving distributed collaborative learning technology, offers a potential solution to leverage isolated remote sensing data. Typically, remote sensing images from different institutions exhibit significant geographic heterogeneity, characterized by coupled class-distribution heterogeneity and object-appearance heterogeneity. However, existing FL methods lack consideration of them, leading to a decline in the performance of the global model when FL is directly applied to RSS. We propose a novel Geographic heterogeneity-aware Federated learning (GeoFed) framework to bridge data islands in RSS. Our framework consists of three modules, including the Global Insight Enhancement (GIE) module, the Essential Feature Mining (EFM) module and the Local-Global Balance (LoGo) module. Through the GIE module, class distribution heterogeneity is alleviated by introducing a prior global class distribution vector. We design an EFM module to alleviate object appearance heterogeneity by constructing essential features. Furthermore, the LoGo module enables the model to possess both global generalization capability and local adaptation. Extensive experiments on three public datasets (i.e., FedFBP, FedCASID, FedInria) demonstrate that our GeoFed framework consistently outperforms the current state-of-the-art methods.
- Abstract(参考訳): リモートセンシングセマンティックセグメンテーション(RSS)は、地球観測ミッションにおいて不可欠な技術である。
地理的情報セキュリティ、データプライバシ、ストレージボトルネック、業界競争に関する懸念から、高品質なアノテートされたリモートセンシング画像はしばしば分離され、機関間で配布される。
リモートセンシングデータアイランドの問題は、グローバルモデルのトレーニングに分離データセットを完全に活用する上での課題を提起している。
プライバシを保存する分散協調学習技術であるフェデレーション学習(FL)は、孤立したリモートセンシングデータを活用する潜在的なソリューションを提供する。
通常、異なる施設からのリモートセンシング画像は、クラス分布の不均一性とオブジェクト出現の不均一性とを併せ持つ、重要な地理的不均一性を示す。
しかし、既存のFL法では考慮されていないため、RSSに直接FLを適用すると、グローバルモデルの性能が低下する。
我々は、RSSでデータアイランドをブリッジする新しい地理異質性を考慮したフェデレーションラーニング(GeoFed)フレームワークを提案する。
我々のフレームワークは,Global Insight Enhancement(GIE)モジュール,Essential Feature Mining(EFM)モジュール,LoGo(LoGo)モジュールという3つのモジュールで構成されています。
GIEモジュールを通して、クラス分布の不均一性は、以前のグローバルなクラス分布ベクトルを導入することで緩和される。
本研究は,本質的な特徴を構築することにより,物体の外観の不均一性を緩和するEMFモジュールを設計する。
さらに、LoGoモジュールは、大域的な一般化能力と局所的な適応性の両方を持つことができる。
3つの公開データセット(例えば、FedFBP、FedCASID、FedInria)に対する大規模な実験は、我々のGeoFedフレームワークが現在の最先端メソッドを一貫して上回っていることを示している。
関連論文リスト
- Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
smileGeoは、新しい視覚的ジオローカライゼーションフレームワークである。
エージェント間のコミュニケーションによって、SmithGeoはこれらのエージェントの固有の知識と、検索された情報を統合する。
その結果,本手法は現在の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2024-08-21T03:31:30Z) - DeepHeteroIoT: Deep Local and Global Learning over Heterogeneous IoT Sensor Data [9.531834233076934]
本稿では,畳み込みニューラルネットワークと双方向Gated Recurrent Unitを併用して,局所的特徴とグローバルな特徴をそれぞれ学習する新しいディープラーニングモデルを提案する。
特に、このモデルはデータセット全体で平均3.37%の精度と2.85%のF1スコアの絶対的な改善を実現している。
論文 参考訳(メタデータ) (2024-03-29T06:24:07Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - SARN: Structurally-Aware Recurrent Network for Spatio-Temporal Disaggregation [8.636014676778682]
オープンデータは、通常プライバシーポリシーに従うために、しばしば空間的に集約される。しかし、粗い、異質な集約は、下流のAI/MLシステムに対する一貫性のある学習と統合を複雑にする。
本稿では,空間的注意層をGRU(Gated Recurrent Unit)モデルに統合したSARN(Structurely-Aware Recurrent Network)を提案する。
履歴学習データに制限のあるシナリオでは、ある都市変数に事前学習したモデルを、数百のサンプルのみを用いて、他の都市変数に対して微調整できることを示す。
論文 参考訳(メタデータ) (2023-06-09T21:01:29Z) - Exploring Incompatible Knowledge Transfer in Few-shot Image Generation [107.81232567861117]
少ないショット画像生成は、いくつかの参照サンプルを使用して、ターゲットドメインから多彩で高忠実な画像を生成することを学習する。
既存のF SIGメソッドは、ソースジェネレータから事前の知識を選択し、保存し、転送し、ターゲットジェネレータを学習する。
本稿では,知識保存を補完する操作であり,軽量プルーニング方式で実装した知識トランケーションを提案する。
論文 参考訳(メタデータ) (2023-04-15T14:57:15Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
特徴抽出のプロセスを改善するために,新しいコンテキスト集約ネットワーク(CATNet)を提案する。
提案モデルは,高密度特徴ピラミッドネットワーク(DenseFPN),空間コンテキストピラミッド(SCP),階層的関心抽出器(HRoIE)の3つの軽量プラグアンドプレイモジュールを利用する。
論文 参考訳(メタデータ) (2021-11-22T08:55:25Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
注意に基づくアーキテクチャ(例えばTransformers)は、分散シフトに対してかなり堅牢であることを示す。
我々の実験は、畳み込みネットワークをトランスフォーマーに置き換えることによって、過去のデバイスを壊滅的に忘れることを大幅に減らせることを示した。
論文 参考訳(メタデータ) (2021-06-10T21:04:18Z) - Video Salient Object Detection via Adaptive Local-Global Refinement [7.723369608197167]
ビデオ・サリエント・オブジェクト検出(VSOD)は多くの視覚アプリケーションにおいて重要な課題である。
vsodのための適応型局所的グローバルリファインメントフレームワークを提案する。
重み付け手法は特徴相関を更に活用し,ネットワークにより識別的な特徴表現を学習させることができることを示す。
論文 参考訳(メタデータ) (2021-04-29T14:14:11Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Relational Deep Feature Learning for Heterogeneous Face Recognition [17.494718795454055]
一般的な顔の特徴に加えて,グローバルな関係情報を抽出するグラフモジュール (Graph Module, NIR) を提案する。
提案手法は,5つの異種顔認識(HFR)データベースにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-02T07:35:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。