論文の概要: A Simple Strategy for Body Estimation from Partial-View Images
- arxiv url: http://arxiv.org/abs/2404.09301v2
- Date: Tue, 16 Apr 2024 03:27:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 11:43:48.339301
- Title: A Simple Strategy for Body Estimation from Partial-View Images
- Title(参考訳): 部分視点画像からの身体推定のための簡易的手法
- Authors: Yafei Mao, Xuelu Li, Brandon Smith, Jinjin Li, Raja Bala,
- Abstract要約: 仮想試行と製品パーソナライズは、現代オンラインショッピングにおいてますます重要になってきており、正確な身体計測推定の必要性を強調している。
従来の研究では、RGB画像から3次元の身体形状を推定する研究が進んでいるが、画像中の人間の観察スケールは、距離と体次元の2つの未知の要因に依存するため、本質的に不明瞭である。
対象骨格を所望の位置に移動させ, スケールを正規化し, 両変数の関係を解消する, モジュラーで単純な高さ正規化法を提案する。
- 参考スコア(独自算出の注目度): 8.05538560322898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Virtual try-on and product personalization have become increasingly important in modern online shopping, highlighting the need for accurate body measurement estimation. Although previous research has advanced in estimating 3D body shapes from RGB images, the task is inherently ambiguous as the observed scale of human subjects in the images depends on two unknown factors: capture distance and body dimensions. This ambiguity is particularly pronounced in partial-view scenarios. To address this challenge, we propose a modular and simple height normalization solution. This solution relocates the subject skeleton to the desired position, thereby normalizing the scale and disentangling the relationship between the two variables. Our experimental results demonstrate that integrating this technique into state-of-the-art human mesh reconstruction models significantly enhances partial body measurement estimation. Additionally, we illustrate the applicability of this approach to multi-view settings, showcasing its versatility.
- Abstract(参考訳): 仮想試行と製品パーソナライズは、現代オンラインショッピングにおいてますます重要になってきており、正確な身体計測推定の必要性を強調している。
前回の研究では、RGB画像から3次元の身体形状を推定する研究が進んでいるが、画像中の人間の観察スケールは、距離と体次元の2つの未知の要因に依存するため、本質的に不明瞭である。
この曖昧さは、特に部分的なシナリオで顕著である。
この課題に対処するために,モジュール式で単純な高さ正規化法を提案する。
この解は対象の骨格を所望の位置に移動させ、スケールを正規化し、2つの変数の関係を解消する。
この手法を最先端のヒューマンメッシュ再構成モデルに組み込むことで,部分体計測の精度が著しく向上することを示す実験結果を得た。
さらに、マルチビュー設定へのこのアプローチの適用性を説明し、その汎用性を示す。
関連論文リスト
- Generalizable Single-view Object Pose Estimation by Two-side Generating and Matching [19.730504197461144]
本稿では,RGB画像のみを用いてオブジェクトのポーズを決定するために,新しい一般化可能なオブジェクトポーズ推定手法を提案する。
本手法は,オブジェクトの参照画像1枚で操作し,3次元オブジェクトモデルやオブジェクトの複数ビューの必要性を解消する。
論文 参考訳(メタデータ) (2024-11-24T14:31:50Z) - Towards Robust and Expressive Whole-body Human Pose and Shape Estimation [51.457517178632756]
全体のポーズと形状の推定は、単眼画像から人体全体の異なる振る舞いを共同で予測することを目的としている。
既存の手法では、既存のシナリオの複雑さの下で、しばしば劣化したパフォーマンスを示す。
全身のポーズと形状推定の堅牢性を高める新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-12-14T08:17:42Z) - GS-Pose: Category-Level Object Pose Estimation via Geometric and
Semantic Correspondence [5.500735640045456]
カテゴリーレベルのポーズ推定は、コンピュータビジョンやロボット工学における多くの潜在的な応用において難しい課題である。
本稿では,事前学習した基礎モデルから得られる幾何学的特徴と意味的特徴の両方を活用することを提案する。
これは、セマンティックな特徴がオブジェクトのテクスチャや外観に対して堅牢であるため、以前のメソッドよりもトレーニングするデータを大幅に少なくする。
論文 参考訳(メタデータ) (2023-11-23T02:35:38Z) - Zolly: Zoom Focal Length Correctly for Perspective-Distorted Human Mesh
Reconstruction [66.10717041384625]
Zollyは、視点歪みの画像に焦点を当てた最初の3DHMR法である。
人体の2次元密度ゆらぎスケールを記述した新しいカメラモデルと新しい2次元歪み画像を提案する。
このタスク用に調整された2つの現実世界のデータセットを拡張します。
論文 参考訳(メタデータ) (2023-03-24T04:22:41Z) - Estimation of 3D Body Shape and Clothing Measurements from Frontal- and
Side-view Images [8.107762252448195]
ファッション業界における3次元人体形状と衣服の計測は,仮想試行錯誤およびサイズ推薦問題に不可欠である。
既存の研究はこれらの問題に対する様々な解決策を提案したが、複雑さと制約のために業界適応には成功しなかった。
本稿では,正面画像と側面画像から形状と測度の両方を推定する,シンプルで効果的なアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-05-28T06:10:41Z) - Generalizable Neural Performer: Learning Robust Radiance Fields for
Human Novel View Synthesis [52.720314035084215]
この研究は、一般のディープラーニングフレームワークを使用して、任意の人間の演奏者の自由視点画像を合成することを目的としている。
我々は、汎用的で堅牢な神経体表現を学習するシンプルな、かつ強力なフレームワーク、Generalizable Neural Performer(GNR)を提案する。
GeneBody-1.0とZJU-Mocapの実験は、最近の最先端の一般化可能な手法よりも、我々の手法の堅牢性を示している。
論文 参考訳(メタデータ) (2022-04-25T17:14:22Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
本研究では,パラメトリックボディモデルと自由形深部暗黙関数を組み合わせたパラメトリックモデル記述型暗黙表現(PaMIR)を提案する。
本手法は, 挑戦的なポーズや衣料品のタイプにおいて, 画像に基づく3次元再構築のための最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-08T02:26:19Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。