論文の概要: Zolly: Zoom Focal Length Correctly for Perspective-Distorted Human Mesh
Reconstruction
- arxiv url: http://arxiv.org/abs/2303.13796v3
- Date: Thu, 24 Aug 2023 16:18:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-25 18:11:50.314978
- Title: Zolly: Zoom Focal Length Correctly for Perspective-Distorted Human Mesh
Reconstruction
- Title(参考訳): Zolly:人間のメッシュ再建のためのズーム焦点長の補正
- Authors: Wenjia Wang, Yongtao Ge, Haiyi Mei, Zhongang Cai, Qingping Sun, Yanjun
Wang, Chunhua Shen, Lei Yang, Taku Komura
- Abstract要約: Zollyは、視点歪みの画像に焦点を当てた最初の3DHMR法である。
人体の2次元密度ゆらぎスケールを記述した新しいカメラモデルと新しい2次元歪み画像を提案する。
このタスク用に調整された2つの現実世界のデータセットを拡張します。
- 参考スコア(独自算出の注目度): 66.10717041384625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As it is hard to calibrate single-view RGB images in the wild, existing 3D
human mesh reconstruction (3DHMR) methods either use a constant large focal
length or estimate one based on the background environment context, which can
not tackle the problem of the torso, limb, hand or face distortion caused by
perspective camera projection when the camera is close to the human body. The
naive focal length assumptions can harm this task with the incorrectly
formulated projection matrices. To solve this, we propose Zolly, the first
3DHMR method focusing on perspective-distorted images. Our approach begins with
analysing the reason for perspective distortion, which we find is mainly caused
by the relative location of the human body to the camera center. We propose a
new camera model and a novel 2D representation, termed distortion image, which
describes the 2D dense distortion scale of the human body. We then estimate the
distance from distortion scale features rather than environment context
features. Afterwards, we integrate the distortion feature with image features
to reconstruct the body mesh. To formulate the correct projection matrix and
locate the human body position, we simultaneously use perspective and
weak-perspective projection loss. Since existing datasets could not handle this
task, we propose the first synthetic dataset PDHuman and extend two real-world
datasets tailored for this task, all containing perspective-distorted human
images. Extensive experiments show that Zolly outperforms existing
state-of-the-art methods on both perspective-distorted datasets and the
standard benchmark (3DPW).
- Abstract(参考訳): 野生での単視RGB画像のキャリブレーションが難しいため、既存の3次元メッシュ再構成(3DHMR)手法では、焦点距離が一定であり、背景環境の文脈に基づいて推定することは困難であり、カメラが人体に近づいたときの視界カメラ投影による胴体、手、顔の歪みの問題に対処できない。
単純焦点距離の仮定は、不正確な定式化された射影行列でこの課題を害することができる。
そこで本稿では,遠近像に着目した最初の3dhmr法であるzollyを提案する。
私たちのアプローチは、主に人体のカメラセンターへの相対的な位置によって引き起こされる遠近的歪みの理由を分析することから始まります。
本研究では,人体の2次元密歪スケールを記述する新しいカメラモデルと,新しい2次元表現である歪み画像を提案する。
次に,環境文脈特徴よりも歪みスケール特徴から距離を推定する。
その後、歪み特徴と画像特徴を統合し、ボディメッシュを再構築する。
正しい投影行列を定式化し、人体の位置を特定するために、遠近法と弱視投影損失を同時に利用する。
既存のデータセットは、このタスクを処理できないため、最初の合成データセットPDHumanを提案し、このタスクに適した2つの実世界のデータセットを拡張する。
広範な実験により、zollyはパースペクティブディストリクトデータセットと標準ベンチマーク(3dpw)の両方において、既存の最先端のメソッドよりも優れていることが示されている。
関連論文リスト
- CameraHMR: Aligning People with Perspective [54.05758012879385]
モノクロ画像からの正確な3次元ポーズと形状推定の課題に対処する。
既存のトレーニングデータセットには、擬似基底真理(pGT)を持つ実画像が含まれている。
pGTの精度を向上させる2つの貢献をしている。
論文 参考訳(メタデータ) (2024-11-12T19:12:12Z) - FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis [51.193297565630886]
テクスチャを正確に推測することの難しさは、特に正面視画像の人物の背中のような不明瞭な領域に残る。
このテクスチャ予測の制限は、大規模で多様な3Dデータセットの不足に起因する。
本稿では,3次元デジタル化におけるテクスチャと形状予測の両立を図るために,広範囲な2次元ファッションデータセットを活用することを提案する。
論文 参考訳(メタデータ) (2024-10-13T01:25:05Z) - StackFLOW: Monocular Human-Object Reconstruction by Stacked Normalizing Flow with Offset [56.71580976007712]
本研究では,人間のメッシュと物体メッシュの表面から密にサンプリングされたアンカー間の人物体オフセットを用いて,人物体空間関係を表現することを提案する。
この表現に基づいて、画像から人・物間の空間関係の後方分布を推定するスタック正規化フロー(StackFLOW)を提案する。
最適化段階では、サンプルの可能性を最大化することにより、人体ポーズと物体6Dポーズを微調整する。
論文 参考訳(メタデータ) (2024-07-30T04:57:21Z) - Hybrid 3D Human Pose Estimation with Monocular Video and Sparse IMUs [15.017274891943162]
モノクロビデオからの時間的3Dポーズ推定は、人間中心のコンピュータビジョンにおいて難しい課題である。
情報ソースを補完するために慣性センサが導入された。
物理的に合理的な3Dポーズを生成するために、異種センサデータを統合することは依然として困難である。
論文 参考訳(メタデータ) (2024-04-27T09:02:42Z) - Personalized 3D Human Pose and Shape Refinement [19.082329060985455]
回帰に基づく手法は3次元人間のポーズと形状推定の分野を支配してきた。
本稿では,初期人間のモデル推定値と対応する画像との密接な対応性を構築することを提案する。
提案手法は画像モデルアライメントの改善だけでなく,3次元精度の向上にも寄与する。
論文 参考訳(メタデータ) (2024-03-18T10:13:53Z) - SelfPose: 3D Egocentric Pose Estimation from a Headset Mounted Camera [97.0162841635425]
頭部装着型VR装置の縁に設置した下向きの魚眼カメラから撮影した単眼画像から,エゴセントリックな3Dボディポーズ推定法を提案する。
この特異な視点は、厳密な自己閉塞と視点歪みを伴う、独特の視覚的な外観のイメージに繋がる。
本稿では,2次元予測の不確実性を考慮した新しいマルチブランチデコーダを用いたエンコーダデコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-02T16:18:06Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
本稿では,RGB画像と大規模に異なる複数の身体部位の3次元メッシュを推定することを目的とする。
主な課題は、2D画像のすべての身体部分の3Dアノテーションを完備するトレーニングデータがないことである。
本稿では,D2S(Deep-to-scale)投影法を提案する。
論文 参考訳(メタデータ) (2020-10-27T03:31:35Z) - Beyond Weak Perspective for Monocular 3D Human Pose Estimation [6.883305568568084]
単眼映像からの3次元関節位置と方向予測の課題を考察する。
まず,市販のポーズ推定アルゴリズムを用いて2次元関節位置を推定する。
次に、初期パラメータを受信するSMPLifyアルゴリズムに準拠する。
論文 参考訳(メタデータ) (2020-09-14T16:23:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。